АЛМА́ЗНАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна горнай прам-сці па здабычы і апрацоўцы алмазаў, а таксама вытв-сці сінт. алмазаў.

Апрацоўка алмазаў існуе са старажытнасці. Алмазы былі вядомы ў Індыі з 8—7 ст. да н.э. У пач. 18 ст. яны знойдзены ў Бразіліі, у 1829 — у Расіі (на Урале), у 1866 — у Паўд. Афрыцы. З канца 19 — пач. 20 ст. Афрыка стала асн. алмазаздабыўным рэгіёнам свету. З 1955 пачалася прамысл. здабыча алмазаў у Якуціі. Аульныя запасы алмазнай сыравіны ацэньваюцца больш як у 2 млрд. каратаў (І кар — 200 мг), найб. ў Заіры, ПАР, Батсване, Анголе, Гане, Намібіі, Аўстраліі.

Па здабычы ювелірных алмазаў 1-е месца ў свеце займае Афрыка, каля палавіны тэхн. алмазаў здабываецца ў Аўстраліі. Асн. вытворцы ювелірных алмазаў — Паўд. Афрыка, Батсвана, Расія, Намібія і Ангола. Каля 80% сусв. здабычы алмазаў кантралюе найбуйнейшая ў галіне кампанія «Дэ Бірс кансалідэйтэд майнс». Збыт прыродных алмазаў на сусв. рынку ажыццяўляе манапаліст — Алмазны сіндыкат. Каля 100% ювелірнай сыравіны, якая паступае на рынак, перапрацоўваецца ў брыльянты. Ювелірныя алмазы апрацоўваюцца пераважна ў Амстэрдаме, Тэль-Авіве, Бамбеі, Нью-Йорку. Сінтэтычныя алмазы (памеры 0,01—1,2 мм) вырабляюць Расія і некат. краіны Усх. Еўропы, амер. кампанія «Джэнерал электрык», прадпрыемствы кампаніі «Дэ Бірс», у ПАР, Ірландыі і Швецыі, а таксама японскія, герм. і інш. фірмы. Сучасная штогадовая вытв-сць сінт. алмазаў ацэньваецца ў 150 млн. кар; за іх кошт на 75% забяспечваецца выраб алмазнага інструменту. На Беларусі арг-цыямі ВА «Беларусьгеалогія» вядзецца пошук алмазаў. У 1980—90 выяўлены алмазаносныя кімберліт-лампраітавыя пароды на ПдУ рэспублікі. Знойдзены 3 крышталі алмазаў. На прывазной сыравіне наладжана апрацоўка алмазаў у Гомелі (прадпрыемства «Крышталь»).

т. 1, с. 264

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІЖМАЛЕКУЛЯ́РНАЕ ЎЗАЕМАДЗЕ́ЯННЕ,

узаемадзеянне паміж малекуламі з насычанымі хім. сувязямі. Існаванне М.ў. ўпершыню ўлічыў Я.Д.Ван дэр Ваальс пры тлумачэнні ўласцівасцей рэальных газаў і вадкасцей (гл. Ван-дэр-Ваальса ўраўненне). Асобны выпадак М.ў. — вадародная сувязь.

Характар М.ў. залежыць ад адлегласці паміж малекуламі (r). Пры вялікіх r (rl, дзе l — лінейныя памеры малекул, што ўзаемадзейнічаюць) электронныя абалонкі малекул не перакрываюцца, паміж малекуламі пераважаюць сілы прыцягнення (далёкадзейныя сілы), якія маюць эл. прыроду. Далёкадзейныя сілы падзяляюць на арыентацыйныя (сілы ўзаемадзеяння паміж палярнымі малекуламі), індукцыйныя (паміж палярнымі і непалярнымі малекуламі), дысперсійныя (паміж любымі малекуламі). Пры малых r (rl), калі электронныя абалонкі малекул перакрываюцца, пераважаюць сілы адштурхоўвання, якія з’яўляюцца кароткадзейнымі сіламі. Энергія адштурхоўвання залежыць ад r так, як у выпадку абменнага ўзаемадзеяння, што прыводзіць да ўтварэння хім. сувязі. М.ў. звычайна апісваецца патэнцыяльнай энергіяй узаемадзеяння U(r) (патэнцыялам М.ў.), а сіла ўзаемадзеяння ƒ — функцыяй ƒ = −dU(r)/dr. Тэарэт. вызначэнне залежнасці U(r) ці эксперым. вымярэнне /практычна немагчымыя з-за вельмі вял. колькасці малекул, што ўзаемадзейнічаюць, і малых значэнняў r. Звычайна залежнасць U(r) падбіраюць эмпірычна так, каб праведзеныя з яе дапамогай разлікі розных характарыстык рэчыва адпавядалі эксперым. даным. М. ў. вывучаюць рознымі фіз. метадамі, асн. з іх: метад малекулярных пучкоў і дыфракцыйныя метады. Пры даследаванні М.ў. усё часцей выкарыстоўваюць разліковыя метады квантавай хіміі.

Літ.:

Межмолекулярные взаимодействия: От двухатомных молекул до биополимеров: Пер. с англ. М., 1981.

Крывая залежнасці патэнцыяльнай энергіі U(r) міжмалекулярнага ўзаемадзеяння ад адлегласці r паміж малекуламі; r = σ — найменшая магчымая адлегласць паміж нерухомымі малекуламі; ε — глыбіня патэнцыяльнай ямы (вызначае энергію сувязі малекул).

т. 10, с. 336

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛУК,

1) ручная зброя далёкага бою для кідання стрэл. Вядомы з часоў позняга палеаліту. Выкарыстоўваўся ўсімі народамі і плямёнамі (акрамя карэнных аўстралійцаў і мікранезійцаў) на вайне і паляванні да 18 ст. (у некаторых народаў Афрыкі і ў 20 ст.).

З сярэдневякоўя ў Еўропе вядомы Л. просты і складаны. Просты Л. — сагнутая ў дугу пругкая драўляная палка, канцы якой сцягнуты цецівой; быў пашыраны ў стараж. рымлян, германцаў, нарманаў, кельтаў, англа-саксаў. Складаны Л. меў драўляную аснову лукавішча, узмоцненага звонку жыламі, з унутр. боку — касцянымі пласцінкамі; канцы і дзяржанне мелі таксама касцяныя пласцінкі, асобныя часткі змацоўваліся клеем і жыламі. Цеціву скручвалі з сухажылляў жывёл, вузкіх палос скуры, валасоў, раслінных валокнаў. Меў памеры 1,2—1,6 м і кідаў стрэлы да 900 м. Складаны Л. пераўзыходзіў просты ў трываласці, далёкасці кідання стрэл і сіле паражэння цэлі. Стрэлы рабілі з прамастойнага дрэва ці трыснягу; наканечнікі — з крэменю, рогу або косці, з 1-га тыс. да н.э. — з металу.

На тэр. Беларусі крамянёвыя наканечнікі стрэл знаходзяць пры раскопках мезалітычных і неалітычных помнікаў Верхняга Падняпроўя, Панямоння, Прыпяці, а металічныя — пры раскопках помнікаў бронзавага і жал. вякоў і ранняга сярэдневякоўя. Спачатку тут карысталіся простым, а з 16 ст. складаным Л., якім была ўзброена лёгкая конніца (гл. ў арт. Лучнікі). У эпоху сярэдневякоўя Л. доўгі час спаборнічаў па баявых якасцях з агнястрэльнай зброяй. Вопытны лучнік з добрага Л. трапна страляў на 300 м і рабіў 4—5 стрэлаў за мінуту.

2) Спарт. прылада (зброя), якая выкарыстоўваецца з 19 ст. Гл. Стральба з лука. Іл. гл. таксама да арт. Зброя.

Літ.:

Разин Е.А. История военного искусства. СПб., 1994.

М.Г.Нікіцін, В.А.Юшкевіч.

т. 9, с. 360

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІЖНАРО́ДНАЯ СІСТЭ́МА АДЗІ́НАК (франц. Systéme International d’Unitées; СІ),

сістэма адзінак фізічных велічынь, прынятая 11-й Генеральнай канферэнцыяй па мерах і вазе (1960). Створана для уніфікацыі вымярэнняў фіз. велічынь і замены вял. колькасці сістэм адзінак, што ўзніклі на аснове метрычнай сістэмы мер. Складаецца з 7 асн. адзінак: даўжыні — метр, масы — кілаграм, часу — секунда, сілы эл. току — ампер, тэрмадынамічнай т-ры — кельвін, сілы святла — кандэла, колькасці рэчыва — моль; 2 дадатковых: плоскага вугла — радыян, прасторавага вугла — стэрадыян.

Ахоплівае ўсе галіны навукі і тэхнікі, устанаўлівае пэўную сувязь у вымярэннях мех., цеплавых, эл. і інш. велічынь. Асн. і дадатковыя адзінкі сістэмы даюць магчымасць пры дапамозе вызначальных ураўненняў атрымаць неабходную колькасць кагерэнтных (без увядзення якіх-н. каэфіцыентаў прапарцыянальнасці) вытворных адзінак 18 вытворных адзінак маюць спец. найменні: бекерэль, ват, вебер, вольт, генры, герц, грэй, джоўль, зіверт, кулон, люкс, люмен, ньютан, ом, паскаль, сіменс, тэсла, фарад. Найменні інш. вытворных адзінак утвараюцца праз найменні асн., дадатковых і некаторых вытворных адзінак. Напр., адзінка шчыльнасці мае найменне кілаграм на кубічны метр, адзінка ўдзельнай цеплаёмістасці — джоўль на кілаграм·кельвін. Пераважная колькасць асн. і вытворных адзінак СІ сваімі памерамі зручная для практыкі. Выкарыстанне дольных адзінак і кратных адзінак дае магчымасць падабраць патрэбныя памеры адзінак пры вымярэнні кожнай фіз. велічыні. Большасць краін свету прыняла М.с.а. для абавязковага ці пераважнага выкарыстання. У б. СССР (у т.л. у Беларусі) з 1.1.1980 было ўстаноўлена абавязковае выкарыстанне М.с.а. ва ўсіх галінах навукі, тэхнікі і нар. гаспадаркі, а таксама пры выкладанні фізіка-тэхн. дысцыплін.

Літ.:

Бурдун Г.Д. Справочник по международной системе единиц. 3 изд. М., 1980;

Болсун А.И., Вольштейн С.Л. Единицы физических величин в школе. Мн., 1983;

Стоцкий Л.Р. Физические величины и их единицы: Справ. М., 1984.

А.І.Болсун.

т. 10, с. 340

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЭ́НА (ад лац. antenna рэя),

прыстасаванне для выпрамянення і прыёму электрамагнітных хваляў, адзін з асн. элементаў ліній радыёсувязі. Перадавальная антэна пераўтварае энергію эл.-магн. ваганняў, засяроджаную ў выхадных вагальных ланцугах радыёперадатчыка, у энергію радыёхваляў. Прыёмная антэна выконвае адваротнае пераўтварэнне энергіі радыёхваляў у энергію ВЧ-ваганняў і аддзяляе карысны сігнал ад перашкод. У большасці перадавальных антэн інтэнсіўнасць выпрамянення залежыць ад напрамку (накіраванасць выпрамянення), што павышае напружанасць эл.-магн. хвалі ў бок найб. выпрамянення (раўназначная эфекту, выкліканаму павышэннем выпрамяняльнай магутнасці); вызначаецца каэфіцыентам накіраванага дзеяння (КНДз). Залежнасць напружанасці эл. поля ад напрамку назірання графічна адлюстроўваецца дыяграмай накіраванасці (ДН). Звычайна ДН мае многапялёсткавы характар (вынік інтэрферэнцыі выпрамянення ад асобных элементаў антэны); адрозніваюць гал. пялёстак і бакавыя. Чым большыя памеры антэны ў параўнанні з даўжынёй хвалі, тым вузейшы гал. пялёстак, большы яго КНДз і большая колькасць бакавых пялёсткаў. Асн. характарыстыкі антэны (ДН, КНДз і ўваходнае супраціўленне, што характарызуе ўзгадненне антэны з лініяй перадачы) аднолькавыя ў рэжымах перадачы і прыёму. Паводле канструкцыі і прынцыпу работы антэны бываюць: бягучай хвалі антэна, дыяпазонная антэна, рамачная антэна, хваляводна-рупарная антэна, люстраная антэна, вібратарная, шчылінная, лінзавая, антэнная рашотка і інш.

Вібратарная антэна — праваднік даўжынёй L = 0,5λ, дзе λ — даўж. хвалі; КНДз=1,64, для яго павелічэння звычайна выкарыстоўваюць многавібратарныя антэны (гл. Тэлевізійная антэна), выкарыстоўваюць ва ўсіх дыяпазонах радыёхваляў. Шчылінная антэна — метал. экран з прамавугольнымі адтулінамі; выкарыстоўваюць у дыяпазоне ЗВЧ. Лінзавая антэна складаецца з абпрамяняльніка (вібратарная, шчылінная або інш. антэны) і дыэлектрычнай лінзы, якая факусіруе хвалю ў вузкі прамень; КНДз да 10​4; выкарыстоўваецца ў радыёлакацыйных і вымяральных устаноўках. Антэнная рашотка — сістэма слабанакіраваных антэн, якія ў рэжыме перадачы далучаюцца да агульнага генератара праз сістэму размеркавання магутнасці, у рэжыме прыёму — да агульнага прыёмніка; КНДз прыблізна роўны здабытку КНДз асобнага выпрамяняльніка і іх колькасці. Асаблівасць — магчымасць павароту ДН адносна самой рашоткі (эл. сканіраванне), што дасягаецца зменай рознасці фазаў паміж суседнімі выпрамяняльнікамі з дапамогай спец. фазавярчальнікаў па камандах ЭВМ.

А.А.Юрцаў.

т. 1, с. 406

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АГАРЫКА́ЛЬНЫЯ,

пласціністыя (Agaricales), парадак вышэйшых базідыяльных грыбоў з групы гіменаміцэтаў. Аб’ядноўвае 12 сям., каля 8 тыс. відаў, пашыраных ва ўсіх кліматычных паясах абодвух паўшар’яў. На Беларусі 110 родаў уключаюць 1,5 тыс. відаў. Найбольшыя сям.: агарыкальныя, ці шампіньёнавыя (Agaricaceae), і балетавыя, якія вылучаюць у самаст. парадак (Boletales); сярод найб. вядомых сям.: аманітавыя, ці мухаморавыя (Amanitaceae), бальбітыевыя (Bolbitiaceae), гіграфоравыя (Hygrophoraceae), гнаевіковыя (Coprinaceae), макрухавыя (Gomphidiaceae), павуціннікавыя (Cortinariaceae), радоўкавыя (Tricholomataceae), ружовапласціннікавыя (Rhodophyllaceae), свінухавыя (Paxillaceae), страфарыевыя (Strophariaceae), сыраежкавыя (Russulaceae). Пладовыя целы аднагадовыя, звычайна мяккамясістыя, радзей пругкія, маюць шапку і ножку (звычайна цэнтральную). Гіменафор пласціністы або трубчасты, у многіх спачатку прыкрыты прыватным пакрывалам (плеўка з рыхлага спляцення гіфаў), якое пазней разрываецца і застаецца ў выглядзе кольца на ножцы (напр., віды з роду маслякоў); у іншых развіваецца таксама і агульнае пакрывала (спачатку на ўсім пладовым целе, потым застаецца накшталт кубачка-вольвы на ножцы і як шматкі на шанцы, напр., шампіньён ядомы, грыбы з роду вальварыела). Пласцінкі могуць быць свабодныя, прымацаваныя да ножкі краем або зубцом, сыходныя па ножцы і інш. Ножка рознага колеру, кансістэнцыі і формы (цыліндрычная, патоўшчаная, звужаная, гладкая слізістая, укрытая лускавінкамі або валакністая, шчыльная, пустая і інш.), часам бакавая ці яе зусім няма (шапка сядзячая). Споры аднаклетачныя, іх памеры, форма, колер зменлівыя. Большасць агарыкальных — сапратрофы на глебе, подсціле, драўніне, мікарызаўтваральнікі (забяспечваюць водна-салявое жыўленне дрэў), радзей — паразіты на жывых дрэвах, пладовых целах інш. агарыкальных. Многія (амаль 200 відаў) — каштоўныя ядомыя грыбы: баравік, падасінавік, падбярозавік, маслякі, зялёнка, падзялёнка, шампіньён, рыжык, вешанка звычайная, грузд, сыраежкі і інш.; ёсць ядавітыя: мухаморы чырвоны, жоўта-зялёны, парфіравы, пантэрны, бледная паганка і інш. віды, апенька несапраўдная серна-жоўтая, пабеленая і белаватая гаварушкі, валаконніцы земляная, надарваная і Келе, страфарыя Горнемана, лускаўніцы і інш.

Літ.:

Жизнь растений. М., 1976. Т. 2. С. 260—271;

Сержанина Г.Н. Шляпочные грибы Белоруссии. Мн., 1984. С. 233—351.

т. 1, с. 72

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГРА́ФІЯ (ад металы + ...графія),

раздзел металазнаўства, які вывучае структуру металаў і сплаваў з дапамогай аптычнай і электроннай мікраскапіі, дыфракцыі рэнтгенаўскіх прамянёў. Даследуе заканамернасці ўтварэння структуры, яе змен пад уплывам знешніх уздзеянняў.

Вывучэнне паверхні металу няўзброеным вокам, праз лупу або мікраскоп з павелічэннем да 10 разоў дазваляе выявіць макраструктуру (крышталічную, хім. або мех. неаднастайнасць у выглядзе буйных зярнят, дэфектаў і дамешкаў). Даследаванне паліраванай і траўленай паверхні пры дапамозе мікраскопа з павелічэннем у 50—1500 разоў дазваляе выявіць мікраструктуру (памеры і формы зярнят, размеркаванне структурных фаз, уключэнняў і дэфармацый). Металаграфскае траўленне (уздзеянне кіслотным і інш. актыўным рэагентам) дае магчымасць устанавіць унутр, структурную будову сплаву. З дапамогай трансмісійнага мікраскопа вядуць электронна-мікраскапічнае даследаванне (выяўляюць фрагменты структуры памерам у некалькі нанаметраў, назіраюць скопішчы дыслакацый і скажэнняў крышт. рашоткі); электроннага сканіруючага мікраскопа — атрымліваюць відарысы дэфектаў структуры з вял. глыбінёй рэзкасці пры павелічэнні да 20 тыс. разоў (вывучаюць паверхні разбурэння, аб’ёмныя ўключэнні і інш.); рэнтгенаўскага дыфрактометра — атрымліваюць інфармацыю аб крышталеграфічных параметрах асобных фаз, унутр. напружаннях, раствораных у металах атамах. Адначасова з металаграфскімі даследаваннямі будовы металаў і сплаваў вывучаюць умовы, што выклікаюць змену іх унутр. структуры (уздзеянне награвання і ахаладжэння, пластычнай дэфармацыі, адпачыну, рэкрышталізацыі, спякання, насычэння хім. элементамі і інш.), а таксама даследуюць фіз. (мех.) уласцівасці. Даныя выкарыстоўваюць для вывучэння працэсаў атрымання метал. матэрыялаў з зададзенымі ўласцівасцямі. М. выкарыстоўваецца як адзін з метадаў кантролю якасці пры ліцці, тэрмаапрацоўцы, апрацоўцы ціскам, зварцы і інш. Першыя даследаванні структуры з выкарыстаннем аптычнага мікраскопа праведзены ў 1931 П.А.Аносавым.

На Беларусі М. выкарыстоўваюць пры распрацоўцы новых матэрыялаў у Фізіка-тэхн. ін-це Нац. АН Беларусі, Бел. навукова-вытв. канцэрне парашковай металургіі, БПА, у металургічнай і металаапрацоўчай прам-сці.

Літ.:

Смолмен Р., Ашби К. Современная металлография: Пер. с англ. М., 1970;

Лившиц Б.Г. Металлография. 3 изд. М., 1990;

Приборы и методы физического металловедения: Пер. с англ. Вып. 1—2. М., 1973—74.

Г.М.Гайдалёнак.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАРЭ́ЗНЫ СТАНО́К,

машына для размернай апрацоўкі рэзаннем (у асн. зняццем стружкі) пераважна метал. загатовак. Бываюць універсальныя (для выканання розных аперацый на дэталях многіх найменняў), шырокага прызначэння (для выканання пэўных аперацый на дэталях многіх найменняў), спецыялізаваныя (для апрацоўкі дэталей аднаго наймення, але розных памераў), спецыяльныя (для выканання асобных аперацый пры вырабе адной дэталі).

У залежнасці ад мэтавага прызначэння, выканання адпаведных тэхнал. аперацый і металарэзнага інструменту адрозніваюць: такарныя, свідравальныя, расточныя, шліфавальныя, паліравальныя, даводачныя, заточныя, зубаапрацоўчыя, рэзьбаапрацоўчыя, фрэзерныя, стругальныя, даўбёжныя, працяжныя станкі (гл. адпаведныя арт.), а таксама разразныя, для фіз.-хім. апрацоўкі, балансіровачныя, мнагамэтавыя (апрацоўчыя цэнтры), агрэгатныя станкі. Паводле ступені аўтаматызацыі адрозніваюць М.с. з ручным кіраваннем, паўаўтаматычныя (апрацоўка адной дэталі ў аўтам. рэжыме), аўтаматычныя (апрацоўка і змена дэталей у аўтам. рэжыме). Паводле дасягальнай дакладнасці апрацоўкі адрозніваюць М.с. класаў дакладнасці: Н (нармальнага), П (павышанага), В (высокага), А (асабліва высокага), С (майстар-станкі з хібнасцю апрацоўкі 1 мкм), Т (з хібнасцю 0,3 мкм), К (з хібнасцю 0,1 мкм). Тэхн ўзровень станкоў характарызуецца паказчыкамі прызначэння, надзейнасці, эканомнага выкарыстання матэрыялаў і электраэнергіі, тэхналагічнасці, стандартызацыі і уніфікацыі. эрганамічнасці і патэнтна-прававымі.

На Беларусі розныя тыпы М.с. выпускаюць прадпрыемствы станкабудаўнічай і інструментальнай прамысловасці. Пра развіццё вытв-сці М.с. на Беларусі гл. ў арт. Станкабудаванне.

Літ.:

Чернов Н.Н. Металлорежущие станки. 4 изд. М., 1987;

Кочергин АИ., Конструирование и расчет металлорежущих станков и станочных комплексов. Мн., 1991;

Станочное оборудование автоматизированного производства. Т. 2. М., 1994;

Проектирование металлорежущих станков и станочных систем: В 3 т. Т. 1—2. М., 1994—95.

А.І.Качаргін.

Металарэзны станок: а — асноўныя вузлы (зборачныя адзінкі; 1 — базавыя дэталі, 2 — галоўны прывод, 3 — прыводы падачы і пазіцыяніравання); б — структурная схема (Iу — уваходная інфармацыя ў выглядзе чарцяжа, кіроўнай праграмы і інш.; Iв — выхадная інфармацыя пра памеры апрацаванай дэталі; 3 — загатоўкі; Д — дэталі; Е — энергія; 1—4 — падсістэмы кіравання, кантролю, маніпуліравання загатоўкамі і рэзальнымі інструментамі, апрацоўкі).

т. 10, с. 305

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТР,

1) у вершаскладанні — абазначэнне меры верша — стапы з яе варыяцыямі, рытмавы ўзор; ідэальная схема чаргавання доўгіх і кароткіх складоў у антычным вершы (гл. Метрычнае вершаскладанне), націскных і ненаціскных у сілаба-танічным (гл. Сілаба-танічнае вершаскладанне). Адрозніваюць М. 2-складовыя (харэй, ямб) і 3-складовыя (дактыль, амфібрахій, анапест). Могуць быць адхіленні ад прынятай схемы: пропуск ненаціскных складоў (спандэй) або іх лішак (пірыхій), але метрычны закон у цэлым вытрымліваецца.

Тэрмінам М. абазначаюць і вершаваны памер — пэўную колькасць аднолькавых стоп у вершаваным радку і характар гэтых стоп (2-складовых і 3-складовых). Напр., верш Я.Купалы «У вечным боры...» напісаны 4-стопным харэем (у кожным яго радку чатыры 2-складовыя стапы з націскам на 1-м складзе). У ант. вершы ў залежнасці ад колькасці паўтарэнняў пэўнага М. адрозніваюць манаметр (1 М.), дыяметр (2 М.), трыметр (3 М.), тэтраметр (4 М.), пентаметр (5 М.), гекзаметр (6 М.), гептаметр (7 М.) і актаметр (8 М.).

2) У музыцы — сістэма арганізацыі рытму, заснаваная на захаванні пэўнай меры ў адносінах велічыні рытмічных пабудоў. Гістарычна склаліся 2 асн. сістэмы М. — квантытатыўная (колькасная, складовалічыльная, часавымяральная), што будуецца на паўтарэнні пэўнай паслядоўнасці няроўных па часе долей (рытмаформулы), і акцэнтная (тактавая, якасная), заснаваная на заканамерным чаргаванні моцных і слабых (апорных і неапорных) аднолькавых па часавай працягласці долей.

Квантытатыўная сістэма характэрна для з’яў, дзе паэзія і музыка неаддзельныя; адзінка вымярэння тут — стапа. Акцэнтная вызначае распад пачатковага сінкрэтызму і ўсталяванне такта ў сучасным разуменні — як адзінкі ўласна музычнага М. Акцэнтны, або тактавы, М. бывае просты (2- і 3-дольны) і складаны (спалучэнне 2-, 3-дольных метрычных груп у 4-, 6-, 9-, 12-дольныя). Існуе і мяшаны М., створаны спалучэннем 2 і больш разнародных груп (5-, 7-дольны). Чаргаванне моцных і слабых долей фіксуецца тактавым памерам — фармальнай рытмічнай схемай, якая ў творы напаўняецца разнастайнымі рытмічнымі малюнкамі, індывідуалізуецца. Просты М. вызначаюць памеры 2/4, 3/4, 3/8, складаны — 4/4, 6/4, 6/8, 9/8, 12/8 і інш., мяшаны — 5/4, 7/4, 7/8 і інш. М. можа выяўляцца ў рэгулярнай і нерэгулярнай паслядоўнасці тактаў. Пры рэгулярным М. тактавая велічыня нязменна паўтараецца, што выяўлена ў пастаянным муз. памеры. Нерэгулярны М. бывае перыядычна-пераменны (з чаргаваннем тактаў 2/4, 3/4) і свабоднапераменны (без устаноўленага парадку). У бел. музыцы вуснай традыцыі квантытатыўная метрыка ў чыстым выглядзе ўласціва нар. песням найстараж. пласта, часткова карагодам і танцам, якія будуюцца на паўтарэнні розных для кожнага жанру пэўных рытмаформул. У фальклоры колькасная сістэма М. найб. устойлівая, звязана з асаблівасцямі нар. вершаскладання («Каля майго церама», «На нова лета», «Ці дома, дома сам пан гаспадар»), У познатрадыц. нар. творчасці квантытатыўны М. паступова ператварыўся ў акцэнтны, што абумоўлена зменай інтанацыйнага строю напеваў, у якіх павялічылася роля эмац. пачатку (выкрыкі, воклічы і інш.) і вырасла значэнне характэрных стылявых рыс канта. Адначасова колькасная сістэма М. часткова захоўвае сваё ўздзеянне. Невыпадкова ў сучасных запісах фальклору тактавая сістэма М. набывае характар т.зв. «народных тактаў» (тэрмін П.Сакальскага), тактавыя рысы якіх паказваюць не месца акцэнту, а межы радкоў і такім чынам падпарадкоўваюцца законам нар.-песеннага вершаскладання. У выніку ўзнікае свабодна-пераменны М. На Беларусі фарміраванне акцэнтнай метрыкі адбывалася ў кантавай культуры (16—17 ст.). У прафес. музыцы нашага часу пад уплывам нар. творчасці розных гіст. пластоў на новым якасным узроўні адбываецца ўзаемапранікненне і ўзаемадзеянне абодвух тыпаў метрыкі. У вак. творах строгая метрычнасць часам парушаецца ў выніку гібкага руху за метрыкай паэт. тэксту. Падобныя з’явы пашыраны і ў інстр. музыцы, дзе свабодна-пераменны М. нярэдка выяўляе асаблівую маст. задуму. У сучаснай бел. музыцы рытм можа быць і свабодным ад М. (1-я ч. канцэрта для габоя і камернага арк. «Плач» Г.Гарэлавай, і інш.).

Літ.:

Холопова В. Вопросы ритма в творчестве композиторов первой пол. XX в. М., 1971;

Яе ж. Русская музыкальная ритмика. М., 1983;

Харлап М.Г. Ритм и метр в музыке устной традиции. М., 1986;

Елатов В.И. Ритмические основы белорусской народной музыки. Мн., 1966.

Т.Л.Шчэрба, М.В.Шыманскі (музыка).

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛА́КТЫКА (ад познагрэч. galaktikos малочны, млечны),

гіганцкая зорная сістэма, да якой належаць Сонца і ўся Сонечная сістэма разам з Зямлёй. У яе ўваходзяць не менш за 100 млрд. зорак (іх агульная маса каля 10​11 мас Сонца), міжзорнае рэчыва (газ і пыл, маса якіх каля 0,05 масы ўсіх зорак), касм. часціцы, эл.-магн. і гравітацыйнае поле.

Структура Галактыкі неаднародная. Адрозніваюць 3 асн. падсістэмы: сферычную (гала) — шаравыя скопішчы, чырвоныя гіганты, субкарлікі, пераменныя зоркі тыпу RR-Ліры, якія рухаюцца вакол цэнтра мас Галактыкі па выцягнутых арбітах у разнастайных напрамках і не ўдзельнічаюць у вярчэнні галактычнага дыска; прамежкавую (дыск) — большасць зорак галоўнай паслядоўнасці, у т. л. Сонца, зоркі-гіганты, белыя карлікі, планетарныя туманнасці; скорасць іх вярчэння мяняецца з адлегласцю ад цэнтра; узрост — некалькі млрд. гадоў; плоскую (тонкі дыск ці спіральныя рукавы) — маладыя зоркі, міжзорны газ і пыл, доўгаперыядычныя цэфеіды, пульсары, многія галактычныя крыніцы гама-, рэнтгенаўскага і інфрачырвонага выпрамянення; узрост гэтых зорак не большы за 100 млн. гадоў, яны не паспелі значна аддаліцца ад месцаў свайго нараджэння, таму спіральныя галіны Галактыкі лічаць месцам утварэння зорак. Цэнтральная вобласць Галактыкі (ядро) знаходзіцца ў напрамку сузор’я Стралец і заслонена ад зямнога назіральніка міжзорнымі воблакамі касм. пылу і газу. Памеры ядра Галактыкі больш за 1000 пк. Яно з’яўляецца крыніцай магутнага радыевыпрамянення, што сведчыць пра актыўныя працэсы, якія адбываюцца ў ім. Самая знешняя частка сферычнай падсістэмы — карона Галактыкі радыусам каля 70 кпк і масай, у 10 разоў большай за масу ўсёй астатняй Галактыкі. Сонца, знаходзіцца на адлегласці 8,5 кпк ад цэнтра, амаль дакладна ў плоскасці Галактыкі, і аддалена ад яе на Пн прыблізна на 25 кпк Скорасць вярчэння Сонца вакол цэнтра Галактыкі 230 км/с. Для зямнога назіральніка зоркі канцэнтруюцца ў напрамку плоскасці Галактыкі і зліваюцца ў бачную карціну Млечнага Шляху. Знаходжанне Сонца паблізу плоскасці Галактыкі ўскладняе даследаванне нашай зорнай сістэмы.

Літ.:

Марочник Л.С., Сучков А.А. Галактика. М., 1984;

Воронцов-Вельяминов Б.А. Очерки о Вселенной. 8 изд. М., 1980;

Климишин И.А. Открытие Вселенной. М., 1987.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)