АКІСЛЕ́ННЕ-АДНАЎЛЕ́ННЕ, акісляльна-аднаўляльныя рэакцыі,

хімічныя рэакцыі, пры якіх адбываецца пераход электронаў ад атамаў, малекул ці іонаў аднаго злучэння да атамаў, малекул і іонаў другога. Паводле электроннай тэорыі акісленне вызначаецца як страта (напр., Zn-2e = Zn​2+), а аднаўленне як далучэнне (напр., Cl2 + 2e = 2Cl​) электронаў. Рэчыва, якое далучае электроны, наз. акісляльнікам, а якое іх страчвае — аднавіцелем. Акісленне-аднаўленне ўзаемазвязаныя працэсы, якія адбываюцца адначасова: Zn + Cl2 = Zn Cl2 (Zn аднавіцель, акісляецца да Zn​2+, а Cl2 акісляльнік, аднаўляецца да 2Cl​). Важнейшыя акісляльнікі: кісларод, хлор, пераксід вадароду, марганцавакіслы калій і інш. Аднаўляльнікі: вугаль, вадарод, ёдзісты калій, аксід вугляроду і інш. Пры складанні ўраўненняў акіслення-аднаўлення ўлічваецца электраадмоўнасць атамаў (здольнасць атама ў малекуле прыцягваць і ўтрымліваць электроны) і акіслення ступень. Перамяшчэнне электронаў у акісленні-аднаўленні адбываецца за кошт розніцы энергій сувязі, у аднаўляльніку электроны звязаны слабей. Рэакцыямі акіслення-аднаўлення карыстаюцца пры атрыманні металаў і неметалаў, розных хім. прадуктаў (аміяку, азотнай і сернай кіслот і інш.), яны ляжаць у аснове гарэння ўсіх відаў паліва, карозіі металаў, электролізу раствораў і расплаваў, дзеяння хім. крыніц току. Уласціва біял. сістэмам (гл. ў арт. Акісленне біялагічнае, Фотасінтэз).

т. 1, с. 192

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСЦЫЛО́ГРАФ (ад лац. oscillum ваганне + ...граф),

вымяральная прылада для графічнага назірання і запісу функцыянальных сувязяў паміж эл. велічынямі, што характарызуюць які-н. фізічны працэс. З дапамогай асцылографа вызначаюць змены сілы току і напружання ў часе, вымяраюць частату, зрух фазаў, характарыстыкі электравакуумных і паўправадніковых прылад, а з дапамогай спец. датчыкаў (напр., тэрмапары) неэл. велічыні: т-ру, ціск, паскарэнне і інш. Асцылографы бываюць нізка- (да 1 МГц) і высокачастотныя (да 100 МГц і вышэй), адна- і многапрамянёвыя, імпульсныя, запамінальныя, спец. тэлевізійныя і інш.

Святлопрамянёвы асцылограф складаецца з люстранага гальванометра (шлейфа), святлоаптычнай сістэмы і прыстасаванняў для працягвання святлоадчувальнага носьбіта запісу (напр., фотапаперы) і непасрэднага назірання, вызначальніка часу. Бывае з фатаграфічным, электраграфічным, ультрафіялетавым і камбінаваным запісам адхілення светлавога праменя, адбітага ад шлейфа, скорасць працягвання носьбіта запісу да 5000 мм/с. Можна адначасова даследаваць да 64 розных працэсаў, напрыклад пры вывучэнні вібрацый і дэфармацый у самалётах, турбінах. Электроннапрамянёвы асцылограф прызначаны для непасрэднага назірання і фатаграфавання эл. працэсаў на экране электронна-прамянёвай трубкі (ЭПТ). Сігнал падаецца на вертыкальна адхіляльныя пласціны (шпулі) ЭПТ, напружанне разгорткі пры назіранні часавай залежнасці — на гарызантальна адхіляльныя.

Літ.:

Аршвила С.В., Борисевич Е.С., Жилевич И.И. Электрографические светолучевые осциллографы. М., 1978;

Линт Г.Э. Автоматические осциллографы при измерениях. М., 1972.

П.С.Габец.

т. 2, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРМАТУ́РА (ад лац. armatura узбраенне, амуніцыя),

дапаможныя, звычайна стандартныя прылады, прыстасаванні і дэталі, неабходныя для забеспячэння нармальнай работы абсталявання і трываласці канструкцый. Арматура жалезабетонных канструкцый успрымае пераважна расцягвальныя намаганні і стварае папярэдняе напружанне. Падзяляецца на рабочую (разліковую), мантажную і размеркавальную (канструкцыйную). Арматура павінна быць трывалая, пластычная, вязкая, добра зварвацца.

Найб. пашырана арматура стальная стрыжнёвая (гарачакачаная, умацаваная тэрмічна і выцягваннем) і драцяная (арматурны дрот, пасмы, канаты, тканыя і зварныя сеткі). Дыям. стрыжнёвай арматуры 6—90 мм, драцяной 3—8 мм. Для паляпшэння счаплення арматуры з бетонам ёй надаюць перыядычны профіль. У якасці арматуры жалезабетонных канструкцый выкарыстоўваюць таксама шкловалакно і вырабы з яго, шклапластыкі і інш. Арматура трубаправодная рэгулюе цячэнне вадкасці, паліва, газу, пары па трубах. Падзяляецца на запорную, рэгулявальную, вадазборную і засцерагальную (вентылі, краны, засаўкі, клапаны, рэгулятары ціску, кандэнсатаадводчыкі і інш.). Арматура электратэхнічная — шчыткі, патроны, выключальнікі, штэпсельныя разеткі і вілкі, некаторыя дэталі эл. машын, дэталі і прыстасаванні для мацавання ізалятараў і правадоў і інш. Арматура святлотэхнічная — часткі асвятляльных прыстасаванняў, прызначаныя для размеркавання светлавога патоку і аховы вачэй ад яркіх прамянёў, для падводу эл. току, прымацавання і аховы лямпаў ад пашкоджанняў і інш. Арматура пячная (металургічных пячэй) — сукупнасць метал. частак, якія павялічваюць трываласць печы і ахалоджваюць яе вонкавую паверхню.

т. 1, с. 487

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗАРАЗРА́ДНЫЯ ІНДЫКА́ТАРЫ,

індыкатары тлеючага разраду, газаразрадныя прылады для візуальнага ўзнаўлення інфармацыі. Прынцып работы заснаваны на свячэнні тлеючага разраду катоднай вобласці (гл. Электрычныя разрады ў газах). Маюць высокую надзейнасць, даўгавечнасць, вял. яркасць, малую паглынальную магутнасць. Бываюць сігнальныя, лінейныя, знакавыя, матрычныя, газаразрадныя індыкатарныя панэлі, прызначаныя для ўзнаўлення найб. складанай інфармацыі (паўтонавай, знакаграфічнай і інш.). Выкарыстоўваюцца для індыкацыі і сігналізацыі ў вымяральных апаратах, сістэмах кантролю і кіравання ў прам-сці, сродках аргтэхнікі, медыцыне, на транспарце і інш.

Газаразрадныя індыкатары запаўняюць сумессю інертных газаў на аснове неону (ярка-аранжавае свячэнне) з дабаўленнем аргону, крыптону і ксенону, таксама на аснове гелію або ртутнай пары. Катоды вырабляюць з чыстага металу (напр., малібдэну) або актываваныя. У сігнальных газаразрадных індыкатарах інфармацыя выяўляецца ў выглядзе кропкі або невял. святлівай вобласці (напр., неонавыя індыкатарныя лямпачкі), у лінейных (аналагавых і дыскрэтных) — у выглядзе святлівага слупка, даўжыня якога прапарцыянальная сіле току, што працякае праз прыладу, або рухомага святлівага пункта, месцазнаходжанне якога залежыць ад колькасці пададзеных на прыладу імпульсаў (гл. Дэкатрон). Знакавыя газаразрадныя індыкатары ўзнаўляюць інфармацыю свячэннем электродаў пэўнай формы (асобныя элементы сімвалаў, сабраных у адно ці некалькі знакамесцаў, або лічбы, літары і інш. сімвалы цалкам), матрычныя — у выглядзе сукупнасці пунктаў, размешчаных на плоскім экране. Гл. таксама Індыкатар.

Ф.А.Ткачэнка.

т. 4, с. 428

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕРА́ТАР у радыётэхніцы, прылада для атрымання (генерацыі) эл.-магн. ваганняў вызначанага віду (пэўных частаты, амплітуды, фазы, формы імпульсаў і інш.). Адрозніваюць генератар з самаўзбуджэннем (аўтагенератары; гл. ў арт. Аўтаваганні), у якіх характарыстыкі ваганняў вызначаюцца ўласцівасцямі самога генератара, і з незалежным узбуджэннем (узмацняльнікі магутнасці эл.-магн. ваганняў ад асобнага аўтагенератара). Генерацыя ажыццяўляецца пераважна за кошт энергіі крыніц пастаяннага току з дапамогай актыўных элементаў (электронных прылад) або шляхам пераўтварэння першасных эл. ваганняў у ваганні зададзенай частаты і формы (квантавы генератар, параметрычны генератар).

Паводле тыпу актыўнага элемента адрозніваюць лямпавыя генератары (напр., на генератарных лямпах), цвердацельныя (на вырашальных узмацняльніках, Гана дыёдах, транзістарах, тунэльных дыёдах), генератар з газаразраднымі прыладамі (на тыратронах), форме ваганняў, частаце, магутнасці і прызначэнні — генератар гарманічных ваганняў (гл. Гарманічныя ваганні), генератар ваганняў спец. формы, нізка-, высока- і звышвысокачастотныя, імпульсныя генератары і інш. У генератары інфранізкіх частот і ў генератары ваганняў спец. формы ўмовы генерацыі забяспечваюцца адваротнай сувяззю; генератары нізкіх і радыёчастот маюць вагальныя контуры, фільтры і інш. ланцугі з засяроджанымі элементамі, генератар звышвысокіх частот — ланцугі з размеркаванымі параметрамі (аб’ёмныя і адкрытыя рэзанатары, радыёхваляводы, палоскавыя і кааксіяльныя лініі і інш., звычайна спалучаныя з актыўнымі элементамі ў адно цэлае). Гл. таксама Генератар вымяральны, Блокінг-генератар, Мультывібратар, Свіп-генератар, Фантастрон.

П.С.Габец.

т. 5, с. 155

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІ́ТЫЙ (лац. Lithium),

Li, хімічны элемент I гр. перыяд. сістэмы, ат. н. 3, ат. м. 6,941, адносіцца да шчолачных металаў. Прыродны складаецца з 2 стабільных ізатопаў ​6Li (7,52%) i ​7Li (92,48%). У зямной кары 6,510​−3 % па масе (гл. Літыевыя руды). Адкрыты ў 1817 швед. хімікам А.Арфведсанам у мінерале петаліце; назва ад грэч. lithos — камень. Л. метал. атрыманы ў 1818 англ. хімікам Г.Дэві.

Мяккі і пластычны серабрыста-беды метал, tпл 180,54 ​С, шчыльн. 533 кг/м³ (самы лёгкі метал). Узаемадзейнічае з вадой, бурна з разбаўленымі мінер. к-тамі (утварае солі; гл. Літыю злучэнні), з галагенамі (з ёдам пры награванні), кіслародам і азотам. У паветры хутка цьмянее з-за ўтварэння Л. нітрыду Li3N і аксіду Li2O. Пры награванні ўзаемадзейнічае з вадародам, вугляродам, серай і інш. неметаламі. З металамі ўтварае інтэрметаліды. Важнейшымі злучэннямі Л. з’яўляюцца літыйарганічныя злучэнні. Захоўваюць Л. у герметычных бляшанках пад слоем сумесі парафіну з мінер. маслам. Атрымліваюць электролізам расплаўленай сумесі хларыдаў Л. і калію (ці барыю). Выкарыстоўваюць у вытв-сці анодаў для хім. крыніц току, як кампанент сплаваў магнію і алюмінію, антыфрыкцыйных сплаваў (бабітаў), як каталізатар полімерызацыі; вадкі — у якасці цепланосьбіта ў ядз. рэактарах; ізатоп ​6Li — у вытв-сці трытыю. Пры кантакце выклікае апёкі вільготнай скуры і вачэй, пры пападанні ў арганізм — слабасць, санлівасць, галавакружэнне.

І.В.Боднар.

т. 9, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТРАЛАГІ́ЧНАЯ СЛУ́ЖБА,

сетка арг-цый, на якія ўскладзена адказнасць за метралагічнае забеспячэнне, г.зн. за ўстанаўленне і выкарыстанне навук.-арганізац. асноў, тэхн. сродкаў, правіл і норм, неабходных для дасягнення адзінства і патрэбнай дакладнасці вымярэнняў. М.с. Беларусі ўключае дзярж. М.с. (у яе ўваходзяць Дзярж. к-т па стандартызацыі, метралогіі і сертыфікацыі — Дзяржстандарт, н.-д. ўстановы, рэгіянальныя органы Дзяржстандарту) і М.с. суб’ектаў гаспадарання (мін-ваў, ведамстваў, прадпрыемстваў, арг-цый, устаноў). Нарматыўнай асновай М.с. з’яўляюцца міжнар. і міждзярж. стандарты, стандарты Рэспублікі Беларусь, тэхн. ўмовы, стандарты прадпрыемстваў, метадычныя ўказанні, інструкцыі; тэхн. базай — эталоны, узорныя сродкі вымярэнняў, рабочыя сродкі вымярэнняў і інш.

Для забеспячэння адзінства вымярэнняў М.с. распрацоўвае эталоны, метады і сродкі перадачы адзінак фіз. велічынь ад эталонаў да рабочых сродкаў вымярэнняў, ажыццяўляе вымярэнні на вытв-сці і ў навук. даследаваннях, распрацоўвае дзярж. стандарты, праводзіць акрэдытацыю выпрабавальных лабараторый і цэнтраў. Прававой асновай М.с. Беларусі з’яўляюцца законы аб забеспячэнні адзінства вымярэнняў, аб сертыфікацыі прадукцыі, работ і паслуг, аб ахове правоў спажыўца і інш. Уведзены ў дзеянне нац. эталоны адзінак часу, частаты, шкалы часу, адзінкі тэмпературы, напружання пераменнага току. Створана лабараторыя дзярж. дазіметрычных эталонаў, зацверджаны і ўнесены ў Дзярж. рэестр сродкаў вымярэнняў Рэспублікі Беларусь дзярж. стандартныя ўзоры саставу раствораў іонаў металаў, арган. рэчываў і пестыцыдаў, водных раствораў неметалаў.

У.Л.Саламаха.

т. 10, с. 313

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫНО́ІДЫ, актыніды,

сям’я з 14 хімічных радыеактыўных элементаў VII перыяду сістэмы элементаў з ат. н. 90—103: торый, пратактыній, уран, нептуній, плутоній, амерыцый, кюрый, берклій, каліфорній, эйнштэйній, фермій, мендзялевій, нобелій і лаўрэнсій. Уран, торый, менш пратактыній ёсць у прыродзе, астатнія актыноіды (наз. трансуранавыя элементы) атрыманы штучна ў выніку ядз. пераўтварэнняў. Вядучая роля ў сінтэзе і вывучэнні актыноідаў належыць Г.Сібаргу. Актыноіды — серабрыста-белыя металы высокай шчыльнасці (да 2∙10​4 кг/м³). Найб. легкаплаўкія нептуній і плутоній, tпл — 640 °C, астатнія плавяцца пры т-ры больш за 1000 °C. Актыноіды рэакцыйна-здольныя, у здробненым стане пірафорныя, лёгка рэагуюць з вадародам, кіслародам, азотам, серай, галагенамі, утвараюць комплексныя злучэнні. Блізкасць хім. уласцівасцяў актыноідаў паміж сабой і з лантаноідамі звязана з падабенствам канфігурацый вонкавых электронных абалонак іх атамаў. Практычна выкарыстоўваюцца торый, уран, плутоній; плутоній-238, кюрый-244 — у вытв-сці ядз. крыніц эл. току бартавых касм. сістэм. Некаторыя нукліды актыноідаў — у медыцыне, дэфектаскапіі, актывацыйным аналізе, нукліды урану-235, плутонію-239 — паліва ў ядз. энергетыцы, крыніца энергіі ў ядз. зброі. Актыноіды і іх злучэнні надзвычай таксічныя, што абумоўлена іх радыеактыўнасцю.

Літ.:

Сиборг Г.Т., Кац Дж.Д. Химия актинидных элементов: Пер. с англ. М., 1960;

Келлер К. Химия трансурановых элементов: Пер. с англ. М., 1976;

Лебедев Н.А., Мясоедов Б.Ф. Последние достижения в аналитической химии трансурановых элементов // Радиохимия. 1982. Т. 24, вып. 6.

т. 1, с. 213

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІТО́МЕТР (ад магніт + ...метр),

прылада для вымярэння параметраў магн. поля і яго напружанасці, напрамку, градыента і інш. М. наз. таксама вымяральныя блокі ўстановак для вызначэння магн. параметраў матэрыялаў. Паводле прынцыпу дзеяння М. падзяляюцца на магнітастатычныя, электрамагн., індукцыйныя, квантавыя, у т.л. звышправодныя; паводле прызначэння — на палямеры, вымяральнікі магн. індукцыі, градыентаметры, інклінатары, флюксметры.

Магнітастатычныя М. заснаваны на ўзаемадзеянні пастаяннага магніта (магн. стрэлкі) са знешнім магн. полем, якое вымяраецца; эл.-магн. — на параўнанні магн. поля, якое даследуецца, з магн. полем эл. току ў шпулі; індукцыйныя — на з’яве электрамагнітнай індукцыі (на ўзнікненні эрс у вымяральнай шпулі пры зменах магн. патоку, што яе пранізвае); квантавыя — на выкарыстанні фіз. з’яў, што адбываюцца пры ўзаемадзеянні магн. момантаў ансамбляў мікрачасціц рэчыва са знешнім магн. полем, якое вымяраецца; звышправодныя — на Джозефсана эфекце. З дапамогай М. вымяраюць магнітнае пале Зямлі і інш. планет, вывучаюць магн. анамаліі, шукаюць карысныя выкапні, вызначаюць уласцівасці магн. матэрыялаў і г.д.

Літ.:

Средства измерений параметров магнитного поля. Л., 1979;

Бондаренко С.И., Шеремет В.И. Применение сверхпроводимости в магнитных измерениях. Л., 1982.

Схема магнітометра — цесламера з аптычнай напампоўкай: 1 — камера з рабочым рэчывам; 2 — паляроід; 3 — крыніца выпрамянення з зададзеным спектральным саставам; 4 — генератар узбуджэння; 5 — фотадэтэктар; 6 — узмацняльнік; 7 — сінхронны дэтэктар; 8 — мадуляцыйны генератар; 9 — высокачастотны генератар; 10 — частатамер; B — магнітнае поле, што вымяраецца; Rac — рэзістар у ланцугу адваротнай сувязі.

М.А.Мяльгуй.

т. 9, с. 484

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МА́КСВЕЛ ((Maxwell) Джэймс Клерк) (13.6.1831, г. Эдынбург, Вялікабрытанія — 5.11.1879),

англійскі фізік, стваральнік класічнай электрадынамікі, адзін з заснавальнікаў статыстычнай фізікі. Чл. Эдынбургскага (1855) і Лонданскага (1860) каралеўскіх т-ваў. Вучыўся ў Эдынбургскім (1847—50) і Кембрыджскім (1850—54) ун-тах. Праф. Абердзінскага (1856—60), Лонданскага (1860—65), Кембрыджскага (з 1871) ун-таў. Арганізатар і першы дырэктар (з 1871) Кавендышскай лабараторыі. Навук. працы па электрадынаміцы, малекулярнай фізіцы, оптыцы, механіцы і тэорыі пругкасці, гісторыі фізікі і інш. Устанавіў статыстычны закон размеркавання малекул ідэальнага газу па скарасцях (1859; гл. Максвела размеркаванне), развіў тэорыю пераносу ў дастасаванні да працэсаў дыфузіі, цеплаправоднасці і ўнутр. трэння, увёў паняцце часу рэлаксацыі. Выявіў статыстычны характар другога закону тэрмадынамікі (1867) і ўвёў тэрмін «статыстычная механіка» (1868). Развіваючы ідэі М.Фарадэя, стварыў тэорыю эл.-магн. поля (гл. Максвела ўраўненні), увёў паняцце току зрушэння, прадказаў існаванне эл.-магн. хваль, выказаў ідэю аб эл.-магн. прыродзе святла, што дало магчымасць выявіць сувязь паміж аптычнымі і эл. з’явамі. Тэарэтычна вызначыў ціск святла (1873), устанавіў сувязь паміж асн. тэрмадынамічнымі параметрамі (суадносіны М.), развіў ідэю каляровага зроку, даследаваў устойлівасць кольцаў Сатурна. Апублікаваў рукапісы Г.Кавендыша па электрычнасці (1879).

Тв.:

Рус. пер. — Избр. соч. по теории алектромагнитного поля. М., 1954;

Статьи и речи. М., 1968.

Літ.:

Кудрявцев П.С. Максвелл. М., 1976;

Максвелл и развитие физики XIX—XX вв.: [Сб. ст.]. М., 1985.

А.І.Балсун.

Дж.К.Максвел.

т. 9, с. 543

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)