ДАЎЖЫ́НЯ ў геаметрыі,

лікавая характарыстыка працягласці лініі.

Д. адрэзка прамой — адлегласць паміж яго канцамі, вымераная адрэзкам, прынятым за адзінку даўжыні. Д. ломанай — сума Д. яе звёнаў. Д. дугі крывой лініі —ліміт Д. ломаных, упісаных у гэтую дугу, калі лік звёнаў неабмежавана павялічваецца і Д. найбольшага звяна імкнецца да нуля. Д. S плоскай лініі, зададзенай у прамавугольных каардынатах ураўненнем y=f(x), a≤x≤b, дзе f(x) — мае неперарыўную вытворную f′(x), вылічаецца па формуле S = a b 1 + [f′(x)]2 dx . Для прасторавай лініі, зададзенай у параметрычнай форме x=x(t), y=y(t), z=z(t), α≤t≤β, S = a b [x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt .

т. 6, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЯ ПРАСТО́РА ў матэматыцы, абагульненне сукупнасці вектараў трохмернай прасторы на выпадак адвольнага ліку вымярэння. Напр., n-мерная эўклідава прастора. Для элементаў вектарнай прасторы (вектараў) вызначаны аперацыі складання і множання на лік (рэчаісны ці камплексны); пры гэтым для канкрэтнай вектарнай прасторы можна дадаткова вызначыць інш. аперацыі і структуры (напр., скалярны здабытак).

Вектарная прастора наз. n-мернай (мае вымернасць n), калі ў ёй існуюць n лінейна незалежных вектараў (базіс), а любыя n+1 вектараў лінейна залежныя (для лінейнай залежнасці 2 вектараў неабходна і дастаткова іх калінеярнасці, 3 вектараў — кампланарнасці і г.д.). У бесканечнамернай вектарнай прасторы (напр., гільбертавай прасторы) любая канечная частка яе з’яўляецца лінейна незалежнай.

А.А.Гусак.

т. 4, с. 64

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРЭ́ГА—ВУ́ЛЬФА ЎМО́ВА,

вызначае напрамак узнікнення максімумаў інтэнсіўнасці пры дыфракцыі рэнтгенаўскіх прамянёў на крышталях; аснова рэнтгенаўскага структурнага аналізу. Устаноўлена ў 1913 незалежна У.Л.Брэгам і Г.В.Вульфам. Паводле Брэга—Вульфа ўмовы 2dsinΘ=mλ, дзе d — адлегласць паміж адбівальнымі (крышталеграфічнымі) плоскасцямі, Θ — вугал паміж праменем, што падае, і адбівальнай плоскасцю (брэгаўскі вугал), λ — даўжыня хвалі выпрамянення, m — цэлы дадатны лік (парадак адбіцця). Брэга—Вульфа ўмова дае магчымасць вызначыць велічыню d (λ звычайна вядома, вугал Θ вымяраецца эксперыментальна). Брэга—Вульфа ўмова выконваецца таксама пры дыфракцыі γ-выпрамянення, электронаў, нейтронаў на крышталях, эл.-магн. выпрамянення радыё- і аптычнага дыяпазонаў на перыядычных структурах, пры дыфракцыі светлавых хваляў на ультрагуку.

т. 3, с. 280

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІ́ЛЬБЕРТАВА ПРАСТО́РА,

абагульненне эўклідавай прасторы на бясконцамерны выпадак. Уведзена ў канцы 19 — пач. 20 ст. ў працах Д.Гільберта як вынік абагульнення фактаў і метадаў раскладання функцый у артаганальныя шэрагі, а таксама даследаванняў інтэгральных ураўненняў. Выкарыстоўваецца ў розных раздзелах матэматыкі, тэорыі імавернасцей, тэарэт. фізікі.

Першасна гільбертава прастора — прастора бясконцых паслядоўнасцей, напр., x = (x1, x2,..., xn, ...) са збежным шэрагам квадратаў x12 + x22 + ... + xn2 + ... . Суму двух элементаў (вектараў) паслядоўнасцей, іх скалярны здабытак і інш. вылічваюць пакаардынатна па звычайных правілах (гл. Вектарная прастора, Вектарнае злічэнне). У больш шырокім сэнсе гільбертава прастора — лінейная прастора, для якой вызначаны скалярны здабытак. У залежнасці ад вызначэння множання элементаў на сапраўдны ці камплексны лік адрозніваюць сапраўдныя і камплексныя гільбертавы прасторы.

т. 5, с. 244

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГРА́НЖА ЎРАЎНЕ́ННІ ў механіцы,

ураўненні руху мех. сістэмы, у якіх яе стан вызначаецца незалежнымі параметрамі, т. зв. абагульненымі каардынатамі. Атрыманы Ж.Л.Лагранжам (1760).

Для галаномных сістэм (гл. Сувязі механічныя) Л.ў. 2-га роду маюць выгляд d dt ( L qi ) L q.i = Qi , дзе L = T(q,q.) U(q) — функцыя Лагранжа, T(q,q.) — кінетычная і U(q) — патэнцыяльная энергіі сістэмы, qi — абагульненыя каардынаты і q.i = dqi dt — абагульненыя імпульсы сістэмы, Qi — абагульненыя сілы, i = 1, 2, ..., n, n — лік ступеней свабоды мех. сістэмы. Л.ў. выкарыстоўваюцца для вывучэння мех. руху і інш. працэсаў у фізіцы, электратэхніцы, аўтаматыцы і інш. Гл. таксама Аналітычная механіка.

т. 9, с. 93

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНАЯ ФУ́НКЦЫЯ,

функцыя, звязаная алгебраічным ураўненнем з незалежнай пераменнай; важнейшая функцыя матэматыкі. Алгебраічная функцыя 𝑓(x) наз. абмежаванай зверху (знізу) на мностве E, калі існуе лік M, што для кожнага x з мноства E выконваецца няроўнасць 𝑓(x) < M[𝑓(x) > M] , напр., функцыя x​2 абмежаваная на адрэзку 0x1. Рацыянальная алгебраічная функцыя атрымліваецца ў выніку канечнага ліку арыфм. аперацый (складання, аднімання, множання і дзялення) над пераменнымі і лікамі, напр., z = 5x2 + 3xy 2y2 , y = 1 + x + x2 1 + x3 ; астатнія алгебраічныя функцыі — ірацыянальныя, якія звычайна неадназначныя, напр., z = x y x2 + y2 , y = 1 + x2 . Агульная тэорыя алгебраічнай функцыі звязана з тэорыяй аналітычных функцый, алгебрай і алгебраічнай геаметрыяй.

т. 1, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГІ́ЧНЫ ЗАКО́Н,

любое сапраўднае лагічнае сцвярджэнне. Да Л.з. адносяцца законы логікі выказванняў (напр., закон несупярэчнасці, закон выключанага трэцяга, закон ускоснага доказу) або логікі прэдыкатаў. Напр., у выраз «няправільна, што р і не-р адначасова верныя» (закон несупярэчнасці) замест пераменнай р трэба падставіць выказванне; усе вынікі такіх падстановак уяўляюць сабой сапраўдныя выказванні (напр., «няправільна, што 11 — просты лік і разам з тым не з’яўляецца простым»). Кожная з лагічных сістэм утрымлівае бясконцае мноства Л.з. і ўяўляе сабой абстрактную знакавую мадэль, якая дае апісанне якога-н. пэўнага фрагмента або тыпу разважанняў. На фармалізаванай мове логікі ўсякі яе закон — гэта заўсёды сапраўдная, правільна пабудаваная формула; можна пабудаваць бясконцае мноства такіх формул, але Л.з. лічаць толькі тыя з іх, якія інтэрпрэтаваны на пазнаючае чалавечае мысленне. Гл. таксама Інтуіцыянізм.

В.М.Пешкаў.

т. 9, с. 89

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 &gt; 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАЛО́ГІЯ

(ад астра... + ...логія),

вучэнне, якое сімвалічнай мовай апісвае суперпазіцыю ўплыву планет і зорак на жыццё прыроды зямлі і яе жыхароў. Зарадзілася ў глыбокай старажытнасці. Была развіта ў Стараж. Егіпце, Міжрэччы, звязана з астральнымі культамі, з яе дапамогай рабіліся прадказанні. У сярэднявеччы ўваходзіла ў лік сямі вольных навук, выкладалася ва ун-тах. У Рэчы Паспалітай кафедра астралогіі была ў Кракаўскім ун-це. Сучасная астралогія мае раздзелы: генетліялогія (вывучае ўплыў планет і інш. астралагічных аб’ектаў на характар і лёс чалавека, на дзяржавы, рэгіёны, гарады), метэаралагічная (разглядае ўплыў астралагічных аб’ектаў на надвор’е), паўсядзённая (у залежнасці ад размяшчэння астралагічных аб’ектаў вызначае найб. зручныя моманты для здзяйснення штодзённых спраў чалавека). У рамках касмабіялогіі вывучаецца сувязь Зямлі і Космасу, уплыў касмічных цыклаў на здароўе чалавека, яго біярытмічную актыўнасць.

Літ.:

Саплин А.Ю. Астрологический энциклопедический словарь. М., 1994.

А.А.Шымбалёў.

т. 2, с. 49

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАЛА́РДЫ

[англ., адзіночны лік lollard ад сярэдненідэрл. lollaert(d) літар. той, хто мармыча (малітвы)],

удзельнікі сял.-плебейскага руху 14 ст. ў Англіі і некаторых інш. зах.-еўрап. краінах, які набыў рысы антыкаталіцкай ерасі. Рух Л. узнік у г. Антверпен (Нідэрланды, цяпер Бельгія) каля 1300, у Англіі пашырыўся з пач. 1360-х г. (пропаведзі Дж. Бола і інш.). Яны выступалі як вулічныя прамоўцы, адвяргалі прывілеі каталіцкай царквы, патрабавалі секулярызацыі яе маёмасці, крытыкавалі несправядлівасці феад. ладу (з хрысц. пазіцый), настойвалі на адмене паншчыны, царк. дзесяціны і інш. Л. не заклікалі непасрэдна да ўзбр. выступленняў, але адыгралі вял. ролю ў ідэалаг. падрыхтоўцы Уота Тайлера паўстання 1381 у Англіі, а Бол быў адным з яго правадыроў. Пасля падаўлення паўстання і асабліва з 1401 пачаліся жорсткія праследаванні Л., хоць іх прыхільнікі заставаліся ў Англіі да пач. 16 ст. і спрыялі падрыхтоўцы Рэфармацыі.

т. 9, с. 111

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)