Булева алгебра, гл. Алгебра логікі

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

БУ́ЛЕВА А́ЛГЕБРА,

апарат сімвалічнай логікі; сукупнасць аб’ектаў з аперацыямі алгебры логікі, якія падпарадкаваны пэўным аксіёмам. Прапанавана Дж.Булем для аналізу рэлейных схем. Знайшла дастасаванне ў тапалогіі, тэорыі імавернасцей і інш. раздзелах матэматыкі. У аксіёмах булева алгебры адлюстравана аналогія паміж паняццямі «мноства», «падзея», «выказванне». Асн. паняцці булева алгебры: логікавая (булева) функцыя, элементарная логікавая функцыя, функцыйна поўная сістэма логікавых функцый, мінімізацыя булевых функцый.

Логікавая функцыя n булевых аргументаў прымае значэнні 0 і 1, азначаецца праўдзіваснай табліцай або аналітычнай залежнасцю ад элементарных логікавых функцый. Вызначана 16 элементарных функцый: кан’юнкцыі (логікавае множанне; аперацыя «І»), дыз’юнкцыі (складанне; «АБО»), інверсіі (адмаўленне; «НЕ»), эквівалентнасці (тоеснасць), складання па модулі 2 (выключальнае «АБО») і інш. Функцыйна поўная сістэма логікавых функцый — сукупнасць функцый, дастатковая для выражэння логікавай функцыі любой складанасці, напр., аперацыя Пірса, аперацыя Шэфера. Мінімізацыя логікавых функцый праводзіцца з мэтай упарадкавання і спрашчэння складаных функцый з дапамогай аксіём булева алгебры, картаў Карно, метадаў Квайна і Мак-Класкі і інш.

Булева алгебра з’яўляецца логікавай асновай функцыянальнай арганізацыі лічбавых ЭВМ; элементарныя логікавыя функцыі рэалізаваны ў спец. інтэгральных мікрасхемах для ЭВМ.

Літ.:

Янсен Й. Курс цифровой электроники: Пер. с голланд.: В 4 т. Т. 1. М., 1987.

А.С.Кабайла.

т. 3, с. 330

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

бу́леў

прыметнік, адносны

адз. мн.
м. ж. н. -
Н. бу́леў бу́лева бу́лева бу́левы
Р. бу́левага бу́левай
бу́левае
бу́левага бу́левых
Д. бу́леваму бу́левай бу́леваму бу́левым
В. бу́леў (неадуш.)
бу́левага (адуш.)
бу́леву бу́лева бу́левы (неадуш.)
бу́левых (адуш.)
Т. бу́левым бу́левай
бу́леваю
бу́левым бу́левымі
М. бу́левым бу́левай бу́левым бу́левых

Крыніцы: piskunou2012.

Граматычная база Інстытута мовазнаўства НАН Беларусі (2026/01, актуальны правапіс)

МЕТАМАТЭМА́ТЫКА (ад мета... + матэматыка),

раздзел матэматычнай логікі, у якім вывучаюцца асновы матэматыкі, структура і заканамернасці матэм. доказаў з дапамогай фармальных метадаў. Тэрмін «М.» ўвёў Д.Гільберт для абазначэння тэорыі, якая аналізуе структуру і ўласцівасці фармальных сістэм. У шырокім сэнсе — метатэорыя матэматыкі.

Паводле Гільберта, фармалізаваная сістэма, што атрымліваецца ў выніку фармалізацыі навук. тэорыі, даследуецца (на прадмет высвятлення яе несупярэчлівасці, паўнаты, вырашальнасці і ўзаемасувязі з інш. тэорыямі, незалежнасці яе аксіём і інш.) змястоўнымі метадамі, якія не апелююць да сэнсу яе аб’ектаў (формул). Гэта канцэпцыя (наз. фінітызм) прадугледжвае выкарыстанне канечных канструкцый («наглядных» матэм. прадметаў, эфектыўна здзяйсняльных працэсаў) і адмаўляе абстракцыю актуальнай бесканечнасці (гл. Абстракцыя). К.Гёдэль паказаў абмежаванасць фінітных (простых) метадаў для даследавання фармалізаваных тэорый; у 1931 ён даказаў тэарэму аб непаўнаце дастаткова багатых фармальных сістэм (у т.л. аксіяматычнай мностваў тэорыі і арыфметыкі натуральных лікаў) і аб немагчымасці доказу несупярэчлівасці сістэмы з дапамогай сродкаў, якія фармалізуюцца ў гэтай сістэме. Для доказу несупярэчлівасці фундаментальных матэм. тэорый сучасная М. выкарыстоўвае больш складаныя, нефінітныя метады.

Састаўная частка прадмета М. — даследаванне фармалізаваных матэм. тэорый, выкладзеных у выглядзе сімвалічных моў, і вывучэнне саміх гэтых моў. Мноства канечных паслядоўнасцей з аперацыямі над імі таксама могуць быць аб’ектамі матэм. даследавання. Гэта абумоўлівае выкарыстанне ў М. метадаў алгебры (гл. Булева алгебра), тэорыі мностваў і тапалогіі. Шырока выкарыстоўваецца ў М. гёдэлеўскі метад арыфметызацыі метатэорыі і тэорыя рэкурсіўных функцый. У больш вузкім сэнсе да М. (у адрозненне ад металогікі) адносяць пытанні сінтаксісу, прадметнай матэм. тэорыі (гл. Сінтаксіс у логіцы); семантыку вылучаюць у якасці самаст. галіны даследавання (гл. Семантыка лагічная).

Літ.:

Клини С.К. Введение в метаматематику: Пер. с англ. М., 1957;

Расёва Е., Сикорский Р. Математика метаматематики: Пер. с англ. М., 1972;

Гильберт Д., Бернайс П. Основания математики: Теория доказательств: Пер. с нем. М., 1982.

С.Ф.Дубянецкі.

т. 10, с. 308

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)