мітахо́ндрыі

(ад гр. mitos = нітка + chondrion = зярнятка)

адзін з відаў унутрыклетачных арганоідаў у форме зярнят, палачак, нітак; змяшчаюць многія ферменты і ўдзельнічаюць у працэсах клетачнага дыхання, пераўтварэння энергіі і біясінтэзу бялку.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

ГЛІКАПРАТЭІ́ДЫ,

глікапратэіны, складаныя бялкі, у якіх ёсць вугляводы. Прысутнічаюць ва ўсіх тканках жывёл, раслін і ў мікраарганізмах. Мал. маса 15 000—1 000 000. Колькасць вугляводаў у глікапратэідах вар’іруе ад долей працэнта да 80%. Да глікапратэідаў належаць многія бялкі крыві (цэрулаплазмін, трансферын, фібрынаген, імунаглабуліны і інш.), бялкі сакрэтаў слізістых залоз (муцыны), апорных тканак (мукоіды), некаторыя ферменты (панкрэатычная рыбануклеаза Б), гармоны (эрытрапаэцын, тырэатрапін), структурныя бялкі клетачных мембран. Глікапратэіды клетачнай абалонкі ўдзельнічаюць у іонным абмене клеткі, імуналагічных рэакцыях, у з’явах міжклетачнай адгезіі і г.д. У крыві і тканках антарктычных рыб выяўлены глікапратэіды-антыфрызы, якія перашкаджаюць утварэнню крышталёў лёду ў арганізме рыб пры т-ры ніжэй за 0 °C.

т. 5, с. 295

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́ЛЬШТЭТЭР (Willstätter) Рыхард Марцін

(13.8.1872, г. Карлсруэ, Германія — 3.8.1942),

нямецкі хімік-арганік. Замежны чл. Расійскай АН (1923), ганаровы чл. АН СССР (1929). Скончыў Мюнхенскі ун-т, у якім выкладаў у 1892—1925 (з 1902 праф.), у 1905—15 у Вышэйшай тэхн. школе ў Цюрыху і ў Ін-це хіміі кайзера Вільгельма ў Берліне. З 1939 у Швейцарыі. Навук. працы па хіміі і біяхіміі прыродных злучэнняў.

Атрымаў крышт. хларафіл і вызначыў яго структуру (разам з А.Штолем). Даследаваў будову алкалоідаў (атрапіну, трапіну, какаіну), раслінныя пігменты (антацыяны і флавоны), ферменты (амілазу, пераксідазу, ліпазу, цукрозу), раскладанне цэлюлозы, працэсы каталітычнай гідрагенізацыі і фотасінтэзу. Нобелеўская прэмія 1915.

Літ.:

Манолов К. Великие химики: Пер. с болг. Т. 2. 3 изд. М., 1986.

т. 4, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЕРНЕБАБО́ВЫЯ КУЛЬТУ́РЫ,

расліны сям. бабовых, якія вырошчваюць пераважна для атрымання харч. і кармавога зерня. Вядома больш за 60 відаў з 17 родаў — боб, віка, гарох, лубін, нут, сачавіца, соя, фасоля, чына і інш. Пашыраны ў Еўропе, Азіі, Афрыцы і Амерыцы. На Беларусі найб. сеюць гарох, лубін (па ўсёй тэрыторыі), віку пераважна ў паўн. раёнах, меншыя плошчы займаюць пялюшка, эспарцэт, фасоля, боб. У сухім рэчыве зерня 25—60 % вугляводаў, 25—40% бялку, 2—7% (у соі да 37%) тлушчу, ферменты, вітаміны і інш. З зерня З.к. робяць крупы, муку, кансервы. Зерне, жамерыны, шрот, зялёная маса — корм для с.-г. жывёлы. З.к. абагачаюць глебу азотам (у севазваротах — папярэднікі для тэхн. і збожжавых культур), лубін — зялёнае ўгнаенне.

т. 7, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗБО́ЖЖАВЫЯ КУЛЬТУ́РЫ,

расліны, якія вырошчваюць пераважна на збожжа — асн. прадукт харчавання чалавека. корм для жывёл і сыравіна для многіх галін прам-сці. З.к. падзяляюць на зерневыя, у т.л. крупяныя культуры (найб. пашыраны пшаніца, рыс, жыта, кукуруза, ячмень, авёс, проса, сорга, грэчка, а таксама чуміза, магар, пайза, дагуса і інш.) і бабовыя (зернебабовыя) культуры. Займаюць амаль палову ўсіх пасяўных плошчаў свету і вырошчваюцца практычна на ўсіх кантынентах. На Беларусі пад З.к. занята каля 3 млн. га, яны даюць ⅓ таварнай прадукцыі раслінаводства. З хлебных злакавых культур найб. плошчы займаюць жыта і ячмень, вырошчваюць таксама азімую і яравую пшаніцу, авёс, кукурузу (у паўд. раёнах), грэчку і проса, зернебабовыя культуры. Зерне хлебных злакаў высокапажыўнае, мае 60—80% вугляводаў, 7—20% бялкоў, 2—5% тлушчу. ферменты, вітаміны і інш., зерне бабовых — багатае бялком.

т. 7, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНА АКТЫ́ЎНЫЯ РЭ́ЧЫВЫ,

прыродныя і сінт. рэчывы, пад уздзеяннем якіх працякаюць і рэгулююцца розныя працэсы ў жывых арганізмах (хім. рэгулятары біял. працэсаў). Разнастайныя па сваёй прыродзе, функцыях, характары дзеяння, месцы ўтварэння і інш. Сістэматычнае вывучэнне біялагічна актыўных рэчываў пачалося ў канцы 19 ст. Узнікла некалькі раздзелаў біялогіі і медыцыны, што займаюцца іх пошукам, вывучэннем механізмаў дзеяння і магчымасцяў практычнага выкарыстання. Да прыродных біялагічна актыўных рэчываў належаць гармоны, вітаміны, ферменты, біястымулятары, інш. хім. злучэнні, вылучаныя з прыродных крыніц з мэтай увядзення ў арганізм чалавека, жывёлы, расліны ці мікроба для рэгулявання ходу нармальных ці паталагічных працэсаў (лек. прэпараты, напр., антыбіётыкі, алкалоіды, некаторыя фенолы). Сярод штучных біялагічна актыўных рэчываў многія сінт. злучэнні, прэпараты якіх выкарыстоўваюцца ў жывёлагадоўлі, раслінаводстве, эксперым. біялогіі і медыцыне (штучныя рэгулятары росту, фунгіцыды, гербіцыды, мутагены і інш.). У шэрагу выпадкаў яны дзейнічаюць больш моцна і выбіральна, чым прыродныя.

А.М.Ведзянееў.

т. 3, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕТЫ́ЧНАЯ ІНЖЫНЕ́РЫЯ,

генная інжынерыя, раздзел малекулярнай біялогіі, звязаны з мэтанакіраваным канструяваннем новых спалучэнняў генаў, якіх няма ў прыродзе. Узнікла ў 1972 (П.Берг, ЗША). Разам з клетачнай інжынерыяй ляжыць у аснове сучаснай біятэхналогіі. Генетычная інжынерыя засн. на даставанні з клетак якога-небудзь арганізма гена (які кадзіруе неабходны прадукт) або групы генаў і злучэнні іх са спец. малекуламі ДНК (т.зв. вектарамі), здольнымі пранікаць у клеткі інш. арганізма (пераважна мікраарганізмаў) і размнажацца ў іх. Гал. значэнне пры генетычнай інжынерыі маюць ферменты — рэкстрыктазы, кожны з якіх рассякае малекулу ДНК на фрагменты ў вызначаных месцах, і ДНК-лігазы, што сшываюць малекулы ДНК у адзінае цэлае. Пасля выдзялення і вывучэння такіх ферментаў стала магчыма стварэнне штучных генет. структур. Рэкамбінантная малекула ДНК мае форму кальца, дзе размешчаны ген (гены) — аб’ект генет. маніпуляцый і вектар (фрагмент ДНК, які забяспечвае размнажэнне ДНК і сінтэз канчатковых прадуктаў жыццядзейнасці генет. сістэмы — бялкоў). Генетычная інжынерыя адкрывае новыя шляхі вырашэння некат. праблем генетыкі, медыцыны, сельскай гаспадаркі. З дапамогай генетычнай інжынерыі атрыманы шэраг біялагічна актыўных злучэнняў: інсулін і інтэрферон чалавека, авальбумін, калаген і інш. пептыдныя гармоны.

Э.В.Крупнова.

т. 5, с. 157

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПЕРО́Н

(ад лац. operare працаваць, дзейнічаць),

участак генетычнага матэрыялу з аднаго, двух і больш счэпленых структурных генаў, якія кадзіруюць бялкі (ферменты), што ажыццяўляюць паслядоўныя этапы біясінтэзу якога-н. метабаліту. У аперон эўкарыёт уваходзіць, як правіла, адзін структурны ген. Рэгулятарныя элементы аперона складаюць таксама праматар (участак малекулы ДНК, з якім спецыфічна звязваецца фермент РНК-палімераза, што ажыццяўляе транскрыпцыю аперона) і аператар (участак ДНК, які нясе функцыю «ўключэння» або «выключэння» структурных генаў і рэгулюе функцыянальную актыўнасць аперона). Канцэпцыя аперона распрацавана франц. вучонымі Ф.Жакобам і Ж.Мано (1961) для тлумачэння механізму рэгуляцыі сінтэзу бялку ў бактэрыяльных клетках.

Рэгулятарная функцыя аперона адбываецца на стадыі транскрыпцыі і забяспечвае каардынацыю сінт. працэсаў і адпаведныя рэакцыі клеткі на ўплыў навакольнага асяроддзя. Кантралюе дзейнасць аперона ген-рэгулятар, які можа знаходзіцца ў розных участках храмасомы. Яго прадукт — бялок-рэгулятар — пастаянна сінтэзуецца ў клетцы ў невял. колькасці і здольны ўзаемадзейнічаць з двума рознымі субстратамі, з аператарам і эфектарам (нізкамалекулярным рэчывам). У рэпрэсібельных сістэмах комплекс бялку-рэгулятара з эфектарам набывае роднасць з аператарам і далучаецца да яго, у выніку адбываецца выключэнне генаў, якія кіруюцца гэтым аператарам. У індуцыбельных сістэмах эфектар, які далучаецца да бялку-рэгулятара, вызваляе аператар ад гэтага бялку. Такім чынам, запускаюцца ў работу гены, падпарадкаваныя дадзенаму аператару.

т. 1, с. 425

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯНЕАРГАНІ́ЧНАЯ ХІ́МІЯ,

неарганічная біяхімія, галіна біяхіміі, што вывучае комплексы іонаў металаў з бялкамі, нуклеінавымі к-тамі, ліпідамі і нізкамалекулярнымі прыроднымі злучэннямі; даследуе ролю іонаў металаў у выкананні біял. функцый прыродных металакомплексаў. Пераважна даследуюцца іоны Na​+, K​+, Ca​2+, Mg​2+, Mn​2+, Fe​2+, Fe​3+, Cu​2+, Co​2+, Mo​2 і Zn​2+, якія ёсць у малекулах біялагічна актыўных рэчываў, напр. сідэхромы, іанафоры (хелатавальныя агенты шчолачных металаў), ферыцін, трансферыны, цэрулаплазмін, гемэрытрын, гемацыянін, металаферменты, карбаксіпептыдаза A, карбаангідраза, медзьзмяшчальныя аксідазы, ферадаксіны, гемы, гемаглабін і міяглабін, цытахромы, перакеідазы і каталазы, хларафіл, карыноіды, комплексы нуклеазідаў, нуклеатыдаў і нуклеінавых к-т, вітаміну B6 і інш.

Склалася на мяжы біяхіміі і неарган. хіміі. Выкарыстоўвае метады хіміі каардынацыйных злучэнняў і квантавай хіміі. У б. СССР фундамент біянеарганічнай хіміі заклалі працы М.Я.Вольпіна, М.У.Валькенштэйна, А.Я.Шылава, К.Б.Яцымірскага і інш., далейшае развіццё атрымала ў працах па мадэляванні азотфіксавальных ферментных сістэм з выкарыстаннем комплексаў малібдэну (А.Я.Шылаў), іанафораў (Ю.А.Аўчыннікаў, В.Ц.Іваноў) і інш.

На Беларусі працы па біянеарганічнай хіміі праводзяцца пераважна ў Ін-це біяарган. хіміі АН. Вывучаны цытахромы P-450 і інш. гемазмяшчальныя ферментныя сістэмы (Дз.І.Мяцеліца, С.А.Усанаў, В.Л.Чашчын), змадэляваны акісляльна-аднаўляльныя ферменты (цытахромы P-450, пераксідазы, каталазы) з выкарыстаннем іонаў і комплексаў жалеза, медзі і малібдэну (Мяцеліца). Вынікі даследаванняў біянеарганічнай хіміі выкарыстоўваюцца для сінтэзу фармакалагічных прэпаратаў.

Літ.:

Хьюз М. Неорганическая химия биологических процессов: Пер. с англ. М., 1983;

Метелица Д.И. Моделирование окислительно-восстановительных ферментов. Мн., 1984.

Дз.І.Мяцеліца.

т. 3, с. 176

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)