ВЯЗА́ННЕ,

від тэкстыльнага пляцення з суцэльнай ніткі, выгнутай у петлі, якія злучаюцца паміж сабой у падоўжным і папярочным напрамках, утвараючы эластычнае палатно — трыкатаж, вытворчасць трыкат. вырабаў; від народнага дэкаратыўна-прыкладнага мастацтва. Адрозніваюць вязанне ручное і машыннае. Прамежкавае месца займае вязанне з дапамогай ручных вязальных апаратаў рознай ступені складанасці.

Існуюць 2 асн. спосабы вязання: правязванне пятлі з адначасовым яе закрываннем (вязанне кручком) і правязванне рада незакрытых петляў з наступным іх закрываннем (вязанне пруткамі або з дапамогай прыстасаванняў у выглядзе ліштваў з калкамі). На Беларусі вязанне кручком і пруткамі вядомае з 18 ст., да 20 ст. цалкам выцесніла захаванае яшчэ ад бронзавага веку іголкавае пляценне. Камбінацыі розных прыёмаў вязання даюць магчымасць ствараць багатыя структурна-каляровыя эфекты трыкат. вырабаў. Найб. прыдатныя для вязання ніткі льняныя, баваўняныя, ваўняныя, з хім. валокнаў і змешаныя. Тонкім метал. кручком вяжуць карункі, карункавыя прошвы і падзоры для ручнікоў і бялізны, сурвэткі, абрусы, пакрывалы, адзенне і дэталі да яго; тоўстым драўляным кручком — палавікі і дыванкі. Пруткамі (метал., пластмасавыя) вяжуць сукенкі, блузкі, шарсцяныя жакеты, джэмперы, хусткі, шапкі, пальчаткі, панчохі і інш. вырабы.

Машыннае вязанне на трыкатажных машынах бывае 2 тыпаў: папярочнавязальнае (кулірнае) і асновавязальнае. Выкарыстоўваюць у вытв-сці адзення, бялізны, галантарэйных і швейных вырабаў (гл. Трыкатажная прамысловасць).

А.У.Лось.

т. 4, с. 339

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЯ ГІДРАДЫНА́МІКА,

галіна фізікі, якая вывучае рух электраправодных газаў і вадкасцей (вадкіх металаў, электралітаў, плазмы) ва ўзаемадзеянні з магнітным полем. Да асн. пытанняў М.г. адносяць даследаванні ўмоў раўнавагі магн. поля з электраправодным асяроддзем, цячэнняў у магн. полі, магнітадынамічных хваль, знаходжанне ўмоў устойлівасці раўнаважных канфігурацый і цячэнняў.

Тэарэт. аснова М.г. — ураўненні гідрадынамікі з улікам эл. токаў і магн палёў у асяроддзі і Максвела ўраўненні. У асяроддзях 3 вял. праводнасцю (гарачая плазма) і (або) вял. памерамі (астрафіз. аб’екты) да звычайнага газадынамічнага ціску дадаецца магн. ціск і магн. нацяжэнне, што прыводзіць да з’яўлення т.зв. альвенаўскіх хваль. М.г. тлумачыць таксама з’явы касм. фізікі: зямны і сонечны магнетызм, паходжанне магн. палёў у Галактыцы, храмасферныя ўспышкі на Сонцы, Магн. буры і інш. Як самаст. навука М.г. сфармулявана ў 1940-х г. шведскім фізікам і астрафізікам Х.Альвенам, які прадказаў новы від хваль, характэрных для добраправоднага асяроддзя ў магн. полі. З 1960-х г. даследаванні па М.г. значна пашырыліся за кошт узнікнення новых відаў вадкіх асяроддзяў, што ўзаемадзейнічаюць з магн. палямі і маюць уласную намагнічанасць (магн. вадкасці і магнітарэалагічныя суспензіі).

На Беларусі даследаванні па М.г. магн. вадкасцей і магнітарэалагічных суспензій вядуцца ў Ін-це цепла- і масаабмену Нац. АН Беларусі, БПА. Розныя эфекты, што вывучаюцца М.г., знайшлі выкарыстанне ў інж. практыцы (стварэнне магнітагідрадынамічных генератараў, МГД-помпаў, ракетных рухавікоў, магчымае ажыццяўленне кіроўнага тэрмаядзернага сінтэзу і інш.).

Літ.:

Альвен Х., Фельтхаммар К.-Г. Космическая электродинамика: Пер. с англ. 2 изд. М., 1967;

Электрогазодинамические течения. М., 1983.

В.Р.Батавой.

т. 9, с. 481

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРМО́НЫ (ад грэч. hormaō прыводжу ў рух),

біялагічна актыўныя рэчывы, якія выдзяляюцца залозамі ўнутр. сакрэцыі ці спецыялізаванымі клеткамі. Спецыфічна ўздзейнічаюць на інш. органы і тканкі, забяспечваючы інтэграцыю біяхім. працэсаў у жывых арганізмах. Пад кантролем гармонаў адбываюцца ўсе этапы развіцця арганізма з моманту яго зараджэння, асн. працэсы яго жыццядзейнасці (ад транспартавання іонаў да счытвання генома, гл. Гарманальная рэгуляцыя). Эфекты дзеяння гармонаў выяўляюцца на ўзроўні цэласнага арганізма (напр., у зменах паводзін), асобных яго сістэм (нерв., стрававальнай, рэтыкулаэндатэліяльнай і інш.), органаў, клетак і іх арганел, ферментных сістэм і асобных ферментаў, на малекулярна-атамным і іонным узроўнях. Парушэнні сакрэцыі гармонаў (іх недахоп або лішак) вядуць да ўзнікнення эндакрынных хвароб, парушэнняў абмену рэчываў, утварэння злаякасных пухлін, развіцця аўтаімунных і інш. хвароб.

Вядома шмат гармонаў і гармонападобных рэчываў, у т. л. больш за 40 у млекакормячых. Іх класіфікуюць па месцы ўтварэння (гармоны гіпофіза, гармоны шчытападобнай залозы, гармоны наднырачнікаў і інш.) і па хім. прыродзе — стэроідныя (андрагены, эстрагены, кортыкастэроіды), пептыдна-бялковыя (інсулін, самататропны, лютэнізавальны, фалікуластымулявальны гармон і інш.), вытворныя амінакіслот (адрэналін, норадрэналін, тыраксін, трыёдтыранін і інш.), простагландзіны. Для гармонаў характэрны надзвычай высокая біял. актыўнасць (дзейнічаюць у мікраскапічных дозах), спецыфічнае і дыстатнае (аддаленне ад месца сінтэзу) дзеянне. Шэрагу гармонаў і гармонападобных рэчываў (т.зв. гарманоідаў, парагармонаў ці тканкавых гармонаў) уласціва мясц. дзеянне, якое рэалізуецца шляхам мясц. дыфузій (паракрынныя гармоны) і праз уплыў на клеткі, якія іх сінтэзуюць (аўтакрынныя гармоны); нейрамедыятары, сінтэзаваныя нерв. клеткамі, вылучаюцца непасрэдна нерв. канцамі. Гармоны адрозніваюцца па працягласці дзеяння: у нейрамедыятараў вымяраецца мілісекундамі, у пептыдных гармонаў — секундамі, у бялковых — мінутамі, у стэроідных — гадзінамі, у тыэроідных гармонаў — суткамі. Залежна ад хім. будовы малекул гармоны ўзаемадзейнічаюць з рэцэптарамі ў розных частках клеткі: стэроідныя ў цытаплазме, тырэоідныя ў ядры, бялкова-пептыдныя на вонкавым баку мембраны. Узаемадзеянне гармонаў з рэцэптарамі прыводзіць да актывацыі апошніх і фарміравання адпаведнай метабалічнай рэакцыі.

У раслін рэчывы, падобныя да жывёльных гармонаў, наз. фітагармонамі.

В.К.Кухта.

т. 5, с. 65

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУК,

ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.

Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.

П.С.Габец, А.Р.Хаткевіч.

т. 5, с. 522

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЯБЕ́СНАЯ МЕХА́НІКА,

раздзел астраноміі, які вывучае рух цел Сонечнай сістэмы ў іх агульным гравітацыйным полі. У шэрагу выпадкаў (у тэорыі руху камет, ШСЗ і інш.), акрамя гравітацыйных сіл, улічваюцца рэактыўныя сілы, ціск выпрамянення, супраціўленне асяроддзя, змена масы і інш. фактары. Задачы Н.м.: вывучэнне агульных пытанняў руху нябесных цел і канкрэтных аб’ектаў (планет, ШСЗ і інш.); вылічэнне значэнняў астр. пастаянных, састаўленне эфемерыд і інш. Рух штучных нябесных цел вывучае раздзел Н.м. — астрадынаміка. Н.м. з’яўляецца вынікам дастасавання законаў класічнай механікі да руху нябесных цел. Тэарэт. асновы сучаснай Н.м. закладзены І.Ньютанам. Значны ўклад у развіццё Н.м. зрабілі Ж.Л..Лагранж, П.С.Лаплас, У.Ж.Ж.Левер’е, С.Ньюкам і інш. Адно з дасягненняў Н.м. — адкрыццё планеты Нептун, існаванне якой разлічана па адхіленнях руху планеты Уран.

Асн. задача Н.м. — вызначэнне каардынат планет як функцый часу. Пры вял. адлегласцях паміж Сонцам і планетамі іх можна лічыць матэрыяльнымі пунктамі, паміж якімі дзейнічаюць гравітацыйныя сілы паводле сусветнага прыцягнення закону (задача n цел). Агульнае рашэнне гэтай задачы не знойдзена. Строгае рашэнне мае толькі двух цел задача. Агульнае рашэнне трох цел задачы вельмі складанае, таму карыстаюцца толькі яе частковымі рашэннямі. Н.м. вывучае таксама восевае вярчэнне і фігуры нябесных цел, праблему ўстойлівасці Сонечнай сістэмы, рух Месяца, прыліўнае ўзаемадзеянне; развіццё касманаўтыкі патрабуе высокай дакладнасці ў вылічэнні арбіт планет. Н.м., якая грунтуецца на законе прыцягнення Ньютана, дастаткова дакладна апісвае рух цел Сонечнай сістэмы, але некаторыя з’явы, напр. рух перыгеліяў арбіт Меркурыя і інш. планет, поўнасцю растлумачыць не можа. Гэтыя з’явы знаходзяць тлумачэнне ў рэлятывісцкай Н.м., якая ўлічвае ў руху нябесных цел эфекты адноснасці тэорыі. Метадамі Н.м. карыстаюцца пры вывучэнні зорак і зорных сістэм (зорная астраномія), галактык (пазагалактычная астраномія).

Літ.:

Гребеников Е.А, Рябов Ю.А, Новые качественные методы в небесной механике. М., 1971;

Брумберг В.А Релятивистская небесная механика. М., 1972.

А.А.Шымбалёў.

т. 11, с. 402

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЕ ДЗЕ́ЯННЕ ІАНІЗАВА́ЛЬНЫХ ВЫПРАМЯНЕ́ННЯЎ,

біяхімічныя, фізіял., генет. і інш. змяненні, што ўзнікаюць у жывых клетках і арганізмах пад уздзеяннем іанізавальных выпрамяненняў. Дзеянне на арганізм залежыць ад віду і дозы выпрамянення, умоў апрамянення і размеркавання паглынутай дозы ў арганізме, фактару часу апрамянення, выбіральнага пашкоджання крытычных органаў, а таксама ад функцыян. стану арганізма перад апрамяненнем. Асн. вынікам узаемадзеяння іанізавальных выпрамяненняў са структурнымі элементамі клетак жывых арганізмаў з’яўляецца іанізацыя, якая прыводзіць да індуцыравання розных хім. і біял. рэакцый ва ўсіх тканкавых сістэмах арганізма. Радыебіял. працэсы, што ідуць на ўзроўні клеткі, ідэнтычныя для чалавека, жывёл і раслін. Адрозненне паміж імі выяўляецца на ўзроўні арганізма. Вылучаюць 2 асн. класы радыебіял. эфектаў: саматычныя (да іх належаць рэакцыі элементаў біясістэмы, што ідуць на працягу ўсяго антагенезу) і генет. (змены, якія рэалізуюцца ў наступных пакаленнях). Да саматычных належаць: радыяцыйная стымуляцыя, радыяцыйныя парушэнні, прамянёвая хвароба, паскарэнне тэмпаў старэння, скарачэнне працягласці жыцця, гібель арганізма. Генетычныя (ці мутагенныя) эфекты іанізавальных выпрамяненняў найбольш небяспечныя. Уздзейнічаючы на ДНК саматычных і генератыўных клетак, іанізавальныя выпрамяненні могуць выклікаць мутацыі, злаякасныя перараджэнні клетак. Ступень біялагічнага дзеяння іанізавальных выпрамяненняў залежыць і ад радыеадчувальнасці: маладыя арганізмы больш адчувальныя да выпрамяненняў, паўлятальная доза (D50) для большасці млекакормячых не перавышае 4—5, для некаторых раслін дасягае 30—40 і больш за сотню грэй. У арганізмах вылучаюцца крытычныя органы, якія першыя рэагуюць на іанізавальныя выпрамяненні: у чалавека і жывёл гэта касцявы мозг, эпітэлій страўнікава-кішачнага тракту, эндатэлій сасудаў, хрусталік вока, палавыя залозы; у вышэйшых раслін — утваральныя тканкі (мерыстэмы). Асобнае месца пры ўздзеянні на біясістэмы належыць малым дозам іанізавальных выпрамяненняў, якія пасля аварыі на Чарнобыльскай АЭС ператварыліся ў паўсядзённы фактар асяроддзя на забруджаных радыенуклідамі тэрыторыях Беларусі, Украіны, Расіі. Рэгулёўнае біялагічнае дзеянне іанізавальных выпрамяненняў шырока выкарыстоўваецца ў медыцыне (рэнтгенадыягностыка, радыетэрапія, выкарыстанне ізатопных індыкатараў і інш.), сельскай гаспадарцы (радыяцыйны мутагенез і інш.).

Літ.:

Кудряшов Ю.Б., Беренфильд Б.С. Основы радиационной биофизики. М., 1982;

Кузин А.М. Структурнометаболическая теория в радиобиологии. М., 1986;

Ярмоненко С.П. Радиобиология человека и животных. 3 изд. М., 1988;

Гродзинский Д.М. Радиобиология растений. Киев, 1989;

Гудков И.Н. Основы общей и сельскохозяйственной радиобиологии. Киев, 1991.

А.П.Амвросьеў.

т. 3, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРО́НЗА (франц. bronze),

1) у тэхніцы — сплаў на аснове медзі, у якім асн. дабаўкамі з’яўляюцца волава, алюміній, берылій, крэмній, свінец, хром і інш. элементы, за выключэннем цынку (яго сплаў з меддзю наз. латунь) і нікелю (медна-нікелевы сплаў). Адпаведна бронза называецца алавянай, алюмініевай і г.д. Бронза мае значную трываласць, пластычнасць, цвёрдасць, высокія антыкаразійныя і антыфрыкцыйныя ўласцівасці.

Алавяная бронза мае да 11% волава і невялікія дабаўкі цынку, свінцу, фосфару, нікелю. Вызначаецца малым каэф. трэння па сталі. З яе робяць рабочы слой падшыпнікаў слізгання і антыкаразійную арматуру. Алюмініевая бронза мае 11% алюмінію і дабаўкі жалеза, нікелю і марганцу, якія павялічваюць трываласць сплаву. Устойлівая да сернай і большасці арган. кіслот. З яе робяць стужкі, палосы на спружыны, пруткі, трубы і фасонныя адліўкі. Берыліевая бронза мае да 2,4% берылію. Ідзе на выраб мембран, спружын, кантактаў, шасцерняў. Крэмніевая бронза мае 1—3% крэмнію, а таксама нікель, цынк, свінец, марганец. Вызначаецца высокімі мех. характарыстыкамі, антыфрыкцыйнымі ўласцівасцямі, добра зварваецца, паяецца і апрацоўваецца рэзаннем. З яе робяць пруткі, стужкі, сеткі, рашоткі, электроды. Марганцавая бронза вызначаецца павышанай каразійнай устойлівасцю, гарачатрываласцю. Свінцовістая бронза можа мець да 60% свінцу. Ёю ўкрываюць (тонкім слоем) укладышы і ўтулкі, якія працуюць у рэжыме слізгання. Хромістая бронза вызначаецца высокай электра- і цеплаправоднасцю. Ідзе на выраб калектараў эл. рухавікоў, электродаў.

2) У мастацтве — адзін з найб. пашыраных матэрыялаў для дэкар.-прыкладных вырабаў і скульптуры. Ліццё з алавянай бронзы (сплаў медзі з волавам, часам з дадаткамі інш. металаў) дае магчымасць з макс. дакладнасцю ўзнаўляць найдрабнейшыя дэталі мадэлі. Добра паддаецца апрацоўцы (чаканцы, паліроўцы, таніроўцы). Матэрыял пластычна вельмі выразны, на паверхні скульптуры (манум., дэкар., станковай) стварае своеасаблівыя святлоценявыя эфекты. Пад дзеяннем атм. з’яў набывае спецыфічныя адценні (паціну).

Вырабы з бронзы вядомы ў мастацтве Месапатаміі (3-е тыс. да н.э.), Стараж. Егіпта (2-е тыс. да н.э.); час росквіту — эпоха італьян. Адраджэння. З 17 ст. маст. ліццё з бронзы пашырана ў Францыі. Вядомыя творы з бронзы ў бел. мастацтве: помнікі Я.Коласу (1972, скульпт. З.Азгур), Я.Купалу (1972, А.Анікейчык, Л.Гумілеўскі, А.Заспіцкі), М.Багдановічу (1981, С.Вакар) у Мінску, Ф.Скарыне (1974, А.Глебаў) у Полацку, С.Буднаму (1980, С.Гарбунова) у Нясвіжы і інш.

т. 3, с. 260

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРАТО́РЫЯ (італьян. oratorio ад лац. oro гавару, малю),

буйная шматчасткавая кампазіцыя для спевакоў-салістаў (часам чытальніка), хору і сімф. аркестра пераважна эпіка-драм. характару, прызначаная для канцэртнага выканання. Мае агульныя рысы з операй (сюжэт, наяўнасць арый, рэчытатываў, ансамбляў, хароў), адрозніваецца ад яе адсутнасцю акцёрскай ігры, дэкарацый (як выключэнне бываюць сцэнічныя араторыі), перавагай апавядальнасці над драм. дзеяннем. У параўнанні з кантатай мае большыя памеры, ярка выражаную сюжэтную аснову.

Зарадзілася на мяжы 16—17 ст. ў Італіі. Напачатку араторыі пісалі на біблейскія, евангельскія або ант. сюжэты. Росквіт жанру ў 18 ст. звязаны з творчасцю Г.Ф.Гендэля, які стварыў класічны тып манум. героіка-эпічнай араторыі, і І.С.Баха, чые пасіёны (страсці) насычаны глыбокім філас. зместам. Пад уплывам асаблівасцяў розных нац. культур араторыя мадыфікавалася. Адбывалася яе сімфанізацыя (кампазітары венскай класічнай школы) або лірызацыя (кампазітары-рамантыкі). У 20 ст. адрадзілася цікавасць да араторыі, якая інтэнсіўна збліжаецца з операй, кантатай, сімфоніяй.

У бел. музыцы першыя араторыі створаны ў 1930-я г. (блізкая да араторыі вак.-сімф. паэма «Над ракою Арэсай» М.Аладава, незакончаная араторыя «Вызваленне» Я.Цікоцкага). У 1960-я г. напісаны араторыі «Песня пра Кубу» С.Картэса, «Званы» Я.Глебава, «Мы — беларусы» К.Цесакова, першая камерная араторыя «Песні Хірасімы» (для чытальніка, салістаў — барытона і сапрана і 2 фп.) Дз.Смольскага. З 1970-х г. бел. араторыі вылучаюцца разнастайнасцю тэматыкі і жанравымі разнавіднасцямі. Сярод найб. значных араторый «Мая Радзіма» Смольскага, «Свяці, зара» Глебава, «Зямля Беларусі» У.Дарохіна (сл. П.Броўкі), «Памяці паэта» Картэса і «Паэт» Смольскага на вершы Я.Купалы, «Памяць Хатыні» В.Войціка, «Хатынь» Цесакова, «Ванька-Устанька» (сл. Я.Еўтушэнкі) і «Вольнасць» паводле кн. А.Радзішчава «Падарожжа з Пецярбурга ў Маскву» А.Мдывані. У 1980 — пач. 1990-х г. створаны араторыі «Бітва за Беларусь» А.Багатырова, «Думкі рускія» А.Бандарэнкі, «Лісткі з календара» (сл. М.Танка) А.Залётнева, «Сказ пра Ігара» і «Іканастас» Л.Шлег, «Куранты» В.Капыцько, «Зорка паэта» Э.Наско, «Беларускае вяселле» Цесакова, «Партызанскія песні» У.Алоўнікава і інш.

Большасць бел. араторый ярка публіцыстычныя, напоўненыя грамадз. пафасам. Для іх характэрны апора на бел. паэзію, прыёмы развіцця, інтанацыйныя і ладавыя асаблівасці бел. муз. фальклору, увядзенне нац. інструментаў. У шэрагу араторый выкарыстаны новыя сродкі выразнасці, у т. л. прыёмы моўнай дэкламацыі з фіксаванымі гукавышыннай лініяй і рытмам, санорныя эфекты, элементы алеаторыкі, серыйнай тэхнікі, падпарадкаваныя маст. мэтам.

Літ.:

Розенов Э.К. Очерк истории оратории // Розенов Э.К. Статьи о музыке: Избр. М., 1982;

Кулешова Г.Г. Белорусская кантата и оратория. Мн., 1987.

А.У.Валадковіч.

т. 1, с. 454

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАЛЮ́НАК,

выява, зробленая ад рукі з дапамогай графічных сродкаў (лініі, штрыха, колеравай плямы), якімі дасягаюцца пластычная мадэліроўка, танальныя і святлоценявыя эфекты; адна з найважнейшых і шырока развітых галін выяўленчага мастацтва. Спалучэнне лінейна-пластычных элементаў фарміруе структуру і прасторавыя адносіны форм, таму М. складае аснову ўсіх відаў маст. адлюстравання на плоскасці (графіка, жывапіс, рэльеф). Як самаст. галіна маст. творчасці адносіцца да графікі (станковы М.). Выкарыстоўваецца і як дапаможны сродак для стварэння жывапісных, графічных, скульпт., арх., дэкар. твораў (кардон, накід, эскіз, эцюд). На аснове М. развіваюцца гравюра і літаграфія. М. адрозніваюць паводле метаду, тэхнікі і характару малявання, тэм і жанраў, прызначэння. Выконваюцца сухімі (вугаль, італьян. аловак, свінцовы ці сярэбраны штыфт, сангіна, графіт) і вадкімі (туш, бістр, сепія, чарніла) фарбавальнымі рэчывамі. У якасці асновы выкарыстоўваюць паперу (у старажытнасці папірус, пергамент). Сродкамі для стварэння ўласна М. могуць служыць акварэль, гуаш, пастэль, соус, туш (як і для жывапісных твораў). М. — аснова маст. адукацыі (маляванне з натуры, вучэбнае маляванне і інш.).

Вытокі М. ў першабытным мастацтве (прадрапаныя на косці, камені ці намаляваныя на сценах пячор палеалітычныя выявы жывёл). З 4 ст. да н.э. ў краінах Д. Усходу развіваецца тонкі каліграфічны М. У Еўропе ў часы антычнасці і сярэднявечча М. быў пераважна дапаможным сродкам для стварэння жывапісных твораў. Як самаст. від творчасці склаўся ў эпоху Адраджэння (Г.Гольбейн, А.Дзюрэр, Ф.Клуэ, Леанарда да Вінчы, Мікеланджэла, Я.Тынтарэта і інш.). Сярод найб. выдатных майстроў 17—18 ст. А.Вато, Ф.Гвардзі, К.Ларэн, Н.Пусэн, П.П.Рубенс, Рэмбрант, У.Хогарт, 19—20 ст. В. ван Гог, Ф.Гоя, Э.Дэга, Э.Дэлакруа, А.Матыс, А.Менцэль, П.Пікасо, Сюй Бэйхун, Ж.А.Энгр і інш.; у Расіі — К.Брулоў, А.Венецыянаў, А.Кіпрэнскі, В.Сяроў, М.Урубель, У.Фаворскі, А.Ягораў і інш.

На Беларусі ў першабытным мастацтве вядомы як арнаментыка на касцяных, каменных, метал., гліняных вырабах. У сярэднявеччы спецыфіка М. найб. яскрава выявілася ў ілюстраванні рукапісаў і друкаваных кніг, у прорысях для абразоў і фрэсак. Зберагліся М. падрыхтоўчыя Б.Радзівіла да арх. планаў, А.ван Вестэрфельда да шпалер (17—18 ст.). Вял. ролю ў развіцці М. адыгралі Віленская маст. школа і Полацкі езуіцкі калегіум. У 19 — пач. 20 ст. ў галіне М. працавалі І.Аляшкевіч, С.Богуш-Сестранцэвіч, В.Ваньковіч, Г.Вейсенгоф, Я.Дамель, Ф.Рушчыц, Н.Сілівановіч, у 1920—50-я г. — М.Аксельрод, А.Астаповіч, В.Букаты, С.Герус, П.Гуткоўскі, М.Гуціеў, В.Дваракоўскі, Я.Драздовіч, Я.Зайцаў, Б.Звінагродскі, Г.Змудзінскі, С.Раманаў, П.Сергіевіч, М.Сеўрук, М.Тарасікаў, А.Тычына і інш. Сярод майстроў М. 1960—90-х г. В.Александровіч, Л.Асецкі, В.Баранаў, М. і У.Басалыгі, У.Вішнеўскі, А.Дзямарын, П.Драчоў, Я.Жылін, М.Карпук, А.Кашкурэвіч, Я.Кулік, М.Купава, А.Г.Лось, Л.Марчанка, Г.Паплаўскі, А.Паслядовіч, У.Савіч, М Селяшчук, Р.Сітніца, Г.Скрыпнічэнка, В.Славук, В.Шаранговіч і інш.

В.Я.Буйвал.

Да арт. Малюнак. В.ван Гог. Sorrow. 1882.
Да арт. Малюнак. А.Кашкурэвіч. Паляванне ў Вялікім княстве Літоўскім. 1986.
Да арт. Малюнак. В.Баранаў. Восеньскія пабудовы. 1991—92.
Да арт. Малюнак. А.Паслядовіч. Рыба і сеткі. 1976.
Да арт. Малюнак. М.Урубель. Аўтапартрэт. 1904.

т. 10, с. 49

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)