ГІПЕ́РБАЛА,
цэнтральная крывая 2-га парадку; адно з канічных сячэнняў, уяўляе сабой мноства пунктаў плоскасці, рознасць адлегласцей ад якіх да двух пэўных пунктаў (фокусаў гіпербалы) пастаянная (па модулі). Кананічнае ўраўненне гіпербалы ў прамавугольнай сістэме каардынат: x2/a2 - y2/b2 = 1, дзе a, b — даўжыні паўвосяў, b2 = c2 - a2, c — фокусная адлегласць гіпербалы (гл. Аналітычная геаметрыя). Мае 2 бясконцыя галіны, сіметрычныя адносна гал. восяў Ox і Oy (сапраўднай, ці факальнай, і ўяўнай); 2 асімптоты y = ±bx/a. Пры a = b гіпербала наз. раўнабочнай і яе ўраўненне мае выгляд x2 - y2 = a2; яе асімптоты ўзаемна перпендыкулярныя, і калі іх прыняць за восі каардынат, то ўраўненне набудзе выгляд xy = a2/2 (графік адваротнай прапарцыянальнасці).
т. 5, с. 255
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАКУУММЕ́ТР,
прылада для вымярэння ціску газаў, ніжэйшага за атмасферны. Падзяляюцца на абсалютныя (напр., вадкасныя, дэфармацыйныя, кампрэсійныя) і адносныя (радыеметрычныя, цеплавыя, іанізацыйныя). Кожны тып вакуумметра разлічаны на вымярэнні ў пэўных межах ціску. Выкарыстоўваюцца ў энергетыцы, электроніцы, вакуумнай металургіі, хім. і харч. прам-сці.
Абсалютныя вакуумметры вымяраюць ціск непасрэдна; іх паказанні не залежаць ад роду газу. У вадкасных вакуумметрах вымераны ціск (рознасць ціскаў) ураўнаважваецца ціскам слупа вадкасці. Дзеянне кампрэсійных вакуумметраў заснавана на Бойля—Марыёта законе У рэфармацыйных вакуумметрах ціск вымяраецца па дэфармацыі адчувальнага элемента (сільфон, мембрана і інш.). Адносныя вакуумметры вымяраюць фіз. велічыні, залежныя ад ціску газу; градуіруюцца па абсалютных узорных вакуумметрах; іх паказанні залежаць ад роду газу. Прынцып дзеяння радыеметрычных вакуумметрах заснаваны на радыеметрычным эфекце, цеплавых — на цеплаабмене напаленай металічнай ніці, іанізацыйных — на вымярэнні сілы іоннага току; крыніца іанізацыі — паток электронаў ад напаленага катода, α- або β-часціцы.
М.І.Дудо.
т. 3, с. 465
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕЙ-ЛЮСА́КА ЗАКО́НЫ,
два законы, адкрытыя Ж.Л.Гей-Люсакам (1802, 1808). Закон цеплавога расшырэння газаў: аб’ём дадзенай масы ідэальнага газу пры пастаянным ціску мяняецца паводле формулы VT = V0(1 + αvΔT), дзе V0 і VT — аб’ём газу пачатковы і пры т-ры T; ΔT = T - T0 — рознасць гэтых т-р; αv — каэф. цеплавога расшырэння газу пры пастаянным ціску (~1/273,15 К-1 для ўсіх газаў). Для рэальных газаў выконваецца набліжана і тым лепш, чым далей ад крытычнага стану знаходзіцца газ. Разам з Бойля—Марыёта законам і Авагадра законам паслужыў асновай для вываду ўраўнення стану ідэальнага газу (гл. Клапейрона—Мендзялеева ўраўненне). Закон аб’ёмных адносін: аб’ёмы газаў, якія ўступаюць у хім. рэакцыю, адносяцца адзін да аднаго і да аб’ёмаў газападобных прадуктаў рэакцыі як простыя цэлыя лікі. Напр., пры ўзаемадзеянні вадароду і хлору з утварэннем газападобнага хлорыстага вадароду H2 + Cl2 = 2HCl аб’ёмы газаў адносяцца як 1:1:2.
т. 5, с. 134
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗНА́КІ АСТРАНАМІ́ЧНЫЯ І АСТРАЛАГІ́ЧНЫЯ,
умоўныя абазначэнні Сонца, Месяца, планет і інш. нябесных цел, а таксама задыякальных сузор’яў, планетных канфігурацый, фаз Месяца і да т.п. Карыстаюцца ў астр. і астралагічнай літаратуры, календарах (гл. табл.). Некаторыя знакі служаць для абазначэння месяцаў і дзён тыдня. Большасць з іх узнікла ў глыбокай старажытнасці.
Знакі астранамічныя і астралагічныя
| Знакі свяціл і дзён тыдня |
— Сонца (нядзеля) |
— Уран |
— Месяц (панядзелак) |
— Нептун |
— Марс (аўторак) |
— Плутон |
— Меркурый (серада) |
⚷ — Хірон |
— Юпітэр (чацвер) |
— Зямля |
— Венера (пятніца) |
— камета |
— Сатурн (субота) |
— зорка |
| Знакі задыяка і месяцаў |
♈︎ — Авен (сакавік), пункт вясенняга раўнадзенства |
♎︎ — Шалі (верасень), пункт асенняга раўнадзенства |
| ♉︎ — Цялец (красавік) |
♏︎ — Скарпіён (кастрычнік) |
| ♊︎ — Блізняты (май) |
♐︎— Стралец (лістапад) |
| ♋︎ — Рак (чэрвень) |
♑︎ — Казярог (снежань) |
| ♌︎ — Леў (ліпень) |
♒︎ — Вадаліў (студзень) |
| ♍︎ — Дзева (жнівень) |
♓︎ — Рыбы (люты) |
| Знакі фаз Месяца |
— маладзік |
— поўня |
— першая квадра |
— апошняя квадра |
| Знакі аспектаў (узаемнага размяшчэння свяціл) |
| ☌ — злучэнне (рознасць даўгот 0°) |
□ — квадратура (90°) |
| ⚺ — сямісекстыль (30°) |
△ — трын (120°) |
| ⚼ — сяміквадрат (45°) |
⚻ — квінконцыя (150°) |
| ⚹ — секстыль (60°) |
☍ — процістаянне (180°) |
☊ — узыходны вузел, даўгата яго ў арбіце |
☋ — сыходны вузел, даўгата яго ў арбіце |
т. 7, с. 99
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГОМАЛАГІ́ЧНЫЯ РАДЫ́ ў хіміі,
гомалагічныя шэрагі (ад грэч. homologos адпаведны, падобны), паслядоўнасць арган. злучэнняў з аднолькавымі функцыян. групамі і аднатыпнай будовай, кожны член якой адрозніваецца ад суседняга на пастаянную структурную адзінку (гомалагічная рознасць), найчасцей метыленавую групу —CH2—. Члены гомалагічных радоў наз. гамолагамі. Вядомыя гомалагічныя рады алканаў CnH2n+2 (агульная ф-ла), дзе n — колькасць атамаў вугляроду ў малекуле, алкенаў CnH2n, аднаасноўных насычаных спіртоў CnH2n+1OH і карбонавых к-т Cn H2n+1COOH і інш.
У гомалагічных радах фіз. ўласцівасці мяняюцца параўнальна заканамерна (для вышэйшых гамолагаў розніца ва ўласцівасцях паступова памяншаецца). Гамолагі маюць агульныя хім. ўласцівасці і спосабы атрымання, але ўласцівасці некаторых з іх (найчасцей першых членаў гомалагічных радоў) могуць значна адрознівацца ад тыповых. Вядомыя таксама ізалагічныя рады — паслядоўнасць злучэнняў, якія маюць аднолькавыя функцыян. групы, але адрозніваюцца ўзрастаючай ненасычанасцю (напр., ізалагічны рад этану: этан CH3—CH3, этылен CH2=CH2, ацэтылен CH≡CH); генетычныя рады, якія маюць злучэнні з аднолькавай колькасцю атамаў вугляроду, але з рознымі функцыян. групамі (напр., этан, этылхларыд CH3—CH2Cl, этанол CH3—CH2OH, ацэтальдэгід CH3—CHO, воцатная к-та CH3—COOH). Паняцце гомалагічных радоў і блізкія да іх ізалагічныя і генет. рады выкарыстоўваюць для сістэматызацыі і класіфікацыі злучэнняў у арган. хіміі.
Л.М.Скрыпнічэнка.
т. 5, с. 329
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БІЯЭЛЕКТРЫ́ЧНЫЯ ПАТЭНЦЫЯ́ЛЫ,
біяпатэнцыялы, электрычныя патэнцыялы, якія ўзнікаюць у жывых тканках і асобных клетках чалавека, жывёл і раслін; паказчык біяэл. актыўнасці; важнейшыя кампаненты працэсаў узбуджэння і тармажэння. Вызначаюцца іх рознасцю паміж двума пунктамі жывой тканкі. Асн. віды: мембранныя, або біяэлектрычныя патэнцыялы спакою, дзеяння, постсінаптычныя. Інш. віды біяэлектрычных патэнцыялаў розных органаў і тканак — аналагі або вытворныя асноўных.
Мембранны патэнцыял — рознасць патэнцыялаў паміж вонкавым і ўнутр. бакамі мембраны жывой клеткі. Абумоўлены нераўнамерным размеркаваннем іонаў (у першую чаргу іонаў натрыю і калію) паміж унутр. саставам клеткі і асяроддзем вакол клеткі. Унутр. частка мембраны ў спакоі зараджана адмоўна, вонкавая — дадатна. Патэнцыял дзеяння характэрны для спецыялізаваных узбуджальных утварэнняў, паказчык развіцця працэсу ўзбуджэння. Забяспечвае, напр., распаўсюджванне ўзбуджэння ад рэцэптараў да нерв. клетак і далей ад клетак да мышцаў, залоз, тканак У мышачным валакне садзейнічае сувязі фіз.-хім. і ферментатыўных рэакцый, якія закладзены ў аснову скарачэння мышцаў. Постсінаптычныя патэнцыялы (узбуджальны і тармазны) узнікаюць на невял. участках клетачнай мембраны. Месцы ўзнікнення градыентаў — мембраны, якія адрозніваюцца структурай і іонаабменнай уласцівасцю. Асноўная крыніца энергіі — адэназінтрыфосфарная кіслата (АТФ). Біяэлектрычныя патэнцыялы інфармуюць аб стане і дзейнасці розных органаў. Іх рэгіструюць і вымяраюць пры даследаванні функцый арганізма, тканак і асобных клетак. У мед. практыцы ў дыягнастычных мэтах рэгіструюць біяэлектрычныя патэнцыялы сэрца (электракардыяграфія), мозга (эл.-энцэфалаграфія), мышцаў (эл. міяграфія) і інш.
А.М.Ведзянееў, У.У.Салтанаў.
т. 3, с. 182
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
różnica
różnic|a
ж.
1. розніца;
~a wieku — розніца ў гадах;
~a czasu — розніца ў часе;
~a w gatunku — розніца ў гатунках;
~a polega na tym, że ... — розніца ў тым, што...;
2. рознагалоссе; разыходжанне;
~a pogłądów — разыходжанне ў поглядах;
3. мат. рознасць;
to nie robi ~y — гэта не мяняе справы; гэта не мае значэння
Польска-беларускі слоўнік (Я. Волкава, В. Авілава, 2004, правапіс да 2008 г.)
ГРАФІ́ЧНЫЯ ВЫЛІЧЭ́ННІ,
метады атрымання лікавых рашэнняў задач з дапамогай графічных пабудаванняў. Заснаваны на выкарыстанні графікаў функцый і паўтарэнні (або замене) з пэўным набліжэннем адпаведных аналітычных аперацый (складання, аднімання, множання, дзялення, дыферэнцыравання, інтэгравання і інш.). Выкарыстоўваюцца для атрымання першых набліжэнняў, якія ўдакладняюцца інш. метадамі, а таксама ў інж. практыцы, калі не патрабуецца высокая дакладнасць.
Лікі пры графічных вылічэннях алг. выразаў адлюстроўваюцца ў выбраным маштабе накіраванымі адрэзкамі. Пры графічным складанні і адніманні лікаў адпаведныя адрэзкі адкладваюць на прамой у пэўным (аднімаемае — у процілеглым) напрамку адзін за адным так, каб пачатак наступнага адрэзка супадаў з канцом папярэдняга. Сума (рознасць) — адрэзак, пачатак якога супадае з пачаткам 1-га, а канец — з канцом апошняга. Множанне і дзяленне ажыццяўляюцца будаваннем прапарцыянальных адрэзкаў, што адсякаюць на старанах вугла паралельныя прамыя, і выкарыстаннем адпаведных дачыненняў. Для графічнага ўзвядзення ў цэлую дадатную (адмоўную) ступень паслядоўна паўтараюць множанне (дзяленне). Для графічнага рашэння ўраўнення = 0 будуюць графік функцыі у = і знаходзяць яго пункты перасячэння з воссю абсцыс [пры рашэнні ўраўненняў 𝑓1(x) = 𝑓2(x) знаходзяць абсцысы пунктаў перасячэння крывых y1 = 𝑓1(x) і y2 = 𝑓2(x)]. Графічнае вылічэнне вызначанага інтэграла заснавана на замене графіка падінтэгральнай функцыі ступеньчатай ломанай, плошча пад якой лікава роўная дадзенаму інтэгралу. Для графічнага дыферэнцыравання будуецца графік вытворнай па значэннях тангенса вугла нахілу датычнай у розных пунктах графіка дадзенай функцыі. Графічнае рашэнне дыферэнцыяльнага ўраўнення dy/dx = 𝑓(x,y) зводзіцца да будавання поля напрамкаў на плоскасці: у некаторых пунктах малююць напрамкі датычнай dy/dx да інтэгральнай крывой, што праходзіць праз іх. Шуканую крывую праводзяць так, каб датычныя да яе мелі зададзеныя напрамкі. Часта папярэдне будуюць сям’ю ліній 𝑓(x,y) = C (ізаклінаў) для розных значэнняў C. У кожным пункце такой лініі вытворная пастаянная і роўная C. Гл. таксама Лікавыя метады, Набліжанае вылічэнне, Набліжанае інтэграванне.
С.У.Абламейка.
т. 5, с. 415
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)