ГІПЕ́РБАЛА,

цэнтральная крывая 2-га парадку; адно з канічных сячэнняў, уяўляе сабой мноства пунктаў плоскасці, рознасць адлегласцей ад якіх да двух пэўных пунктаў (фокусаў гіпербалы) пастаянная (па модулі). Кананічнае ўраўненне гіпербалы ў прамавугольнай сістэме каардынат: x​2/a​2 - y​2/b​2 = 1, дзе a, b — даўжыні паўвосяў, b​2 = c​2 - a​2, c — фокусная адлегласць гіпербалы (гл. Аналітычная геаметрыя). Мае 2 бясконцыя галіны, сіметрычныя адносна гал. восяў Ox і Oy (сапраўднай, ці факальнай, і ўяўнай); 2 асімптоты y = ±bx/a. Пры a = b гіпербала наз. раўнабочнай і яе ўраўненне мае выгляд x​2 - y​2 = a​2; яе асімптоты ўзаемна перпендыкулярныя, і калі іх прыняць за восі каардынат, то ўраўненне набудзе выгляд xy = a​2/2 (графік адваротнай прапарцыянальнасці).

т. 5, с. 255

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)