БРЫГС ((Briggs) Генры) (2.1561, Уолівуд, графства Йоркшыр, Вялікабрытанія — 26.1.1630),

англійскі матэматык. Скончыў Кембрыджскі ун-т (1588). З 1619 праф. Оксфардскага ун-та. Навук. працы па геаметрыі, трыганаметрыі і навігацыі. Склаў і апублікаваў першыя табліцы дзесятковых лагарыфмаў: 8-значныя для лікаў першай тысячы (1617), 14-значныя для лікаў ад 1 да 20 000 і ад 90 000 да 100 000 (1624). У 1633 выдадзены 14-значныя табліцы лагарыфмаў трыганаметрычных функцый, падрыхтаваныя Брыгсам з Г.Гелібрандам.

т. 3, с. 273

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНЫ ЛІК,

корань мнагаскладу P(x) = an xn + ... + a1x + a0 з рацыянальнымі каэфіцыентамі an, з якіх не ўсе роўныя 0; у агульным выпадку можа быць камплексным лікам. Г.Кантар (1872) паказаў, што мноства ўсіх алгебраічных лікаў злічонае і таму існуюць неалг. лікі (гл. Трансцэндэнтны лік), напр., 2, π і інш. Мноства ўсіх алгебраічных лікаў — алгебраічна замкнёнае поле (напр., адвольны корань мнагаскладу з алг. каэфіцыентамі таксама алгебраічны лік).

В.І.Бернік.

т. 1, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕПЕРАРЫ́ЎНЫ ДРОБ, ланцуговы дроб,

адзін з асн. спосабаў прадстаўлення лікаў і функцый. Выкарыстоўваецца ў тэорыі лікаў, матэм. аналізе, механіцы, тэорыі імавернасцей.

Н.д., які адлюстроўвае лік a, можна атрымаць, калі запісаць гэты лік у выглядзе a = a0 + 1/a1, дзе a0 — цэлы лік і 0 < 1/a1< 1, потым у такім жа выглядзе запісаць a1 і г.д. Гэты працэс прыводзіць да канечнага дробу, калі a — рацыянальны лік, і да бясконцага ў выпадку ірацыянальнага ліку.

т. 11, с. 288

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

арыфме́тыка

(гр. arithmetike)

раздзел матэматыкі, які займаецца вывучэннем прасцейшых уласцівасцей лікаў і дзеянняў над імі.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

склада́нне, -я, н.

1. гл. складаць.

2. У матэматыцы: дзеянне, пры дапамозе якога з двух або некалькіх лікаў (складаемых) атрымліваюць новы (суму), які мае столькі адзінак, колькі было ва ўсіх дадзеных ліках разам.

3. У мовазнаўстве: слова, што ўтворана з дзвюх або некалькіх асноў і прадстаўляе лексічную адзінку, якая мае граматычныя і семантычныя адзнакі паасобнага слова; складанае слова (напр.: збожжаўборачны, першадрукар).

Тлумачальны слоўнік беларускай літаратурнай мовы (І. Л. Капылоў, 2022, актуальны правапіс)

difference

[ˈdɪfrəns]

n.

1) ро́зьніца f.

2) Math. ро́знасьць f. (двух лі́каў)

3) нязго́да f., разла́д -у m.; спрэ́чка, сва́рка f.

Ангельска-беларускі слоўнік (В. Пашкевіч, 2006, класічны правапіс) 

нумара́цыя, ‑і, ж.

1. Дзеянне паводле знач. дзеясл. нумараваць. Нумарацыя старонак.

2. Лічбавае абазначэнне прадметаў, якія змяшчаюцца ў паслядоўным парадку. [Валя] хвалявалася, паднімаючыся на крутых ўсходах і прыглядаючыся да нумарацыі кватэр. Чорны.

3. Сукупнасць прыёмаў называння і абазначэння лікаў; сістэма злічэння. Дзесятковая нумарацыя.

[Лац. numeratio.]

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

ЛІ́ЧБЫ,

умоўныя знакі для абазначэння лікаў. У вузкім сэнсе — знакі 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Найб. раннім з’яўляецца запіс лікаў словамі, які захоўваўся, напр., у матэматыкаў Сярэдняй Азіі і Б. Усходу да 10 ст. З развіццём эканомікі ўзнікла неабходнасць стварэння больш дасканалых спосабаў абазначэння лікаў і распрацоўкі прынцыпаў іх запісу (сістэм лічэння). Самыя старажытныя Л. з’явіліся ў 3—2-м тыс. да н. э. (Вавілон, Стараж. Егіпет, Кітай). Напр., вавілонскія Л. ўяўлялі сабой клінапісныя знакі для абазначэння лікаў 1, 10 і 100 (ці толькі 1 і 10); астатнія натуральныя лікі запісвалі з дапамогай іх злучэння. У егіпецкай іерагліфічнай нумарацыі існавалі асобныя знакі для абазначэння адзінак дзесятковых разрадаў. З 1-га тыс. да н. э. многія народы (грэкі, фінікійцы, арабы, армяне, славяне і інш.) з алфавітным пісьмом Л. абазначалі літарамі алфавіта; у славянскай нумарацыі пры гэтым зверху ставіўся спец. знак (цітла). У сярэднія вякі ў Еўропе карысталіся рымскай нумарацыяй, у якой асобнымі знакамі (рымскімі лічбамі) можна было запісаць любы лік да мільёна. Больш дасканалая нумарацыя ўзнікла ў Індыі не пазней 5 ст.; у Еўропу яе перанеслі арабы (адсюль назва арабскія Л.); сучасная дзесятковая сістэма лічэння вядома з 15 ст. Гл. таксама Лічэнне.

В.І.Бернік.

т. 9, с. 328

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДРЭ́ЗАК, сегмент (матэм.),

мноства лікаў або пунктаў на прамой, размешчаных паміж двума лікамі або пунктамі A і B, разам з пунктамі A і B. Каардынаты адрэзка задавальняюць умовам a ≤ x ≤ b (a і b — каардынаты канцоў адрэзка).

т. 1, с. 137

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІК у матэматыцы,

адна з асн. матэм. абстракцый, звязаная з выражэннем колькаснай характарыстыкі прадметаў. У самым простым выглядзе паняцце Л. ўзнікла ў першабытным грамадстве і вызначалася неабходнасцю правядзення падлікаў і вымярэнняў у практычнай дзейнасці чалавека. Потым Л. становіцца асн. паняццем матэматыкі і далейшае развіццё гэтага паняцця звязана з вывучэннем яго агульных заканамернасцей (гл. Лікаў тэорыя).

Паняцце натуральных Л. (1, 2, 3, ...) узнікла ў глыбокай старажытнасці з патрэбы параўноўваць і колькасна характарызаваць (лічыць) розныя мноствы прадметаў. З узнікненнем пісьменства Л. пазначалі рыскамі на матэрыяле, які служыў для запісу, напр. папірусе, гліняных таблічках. Пазней уведзены інш. знакі для абазначэння вял. лікаў. З цягам часу паняцце натуральнага Л. набыло больш абстрактную форму, якая ў вуснай мове перадаецца словамі, на пісьме — спец. знакамі. Важным крокам з’яўляецца асэнсаванне бясконцасці натуральнага раду Л., што адлюстравана ў помніках антычнай матэматыкі, працах Эўкліда і Архімеда. Паняцце аб адмоўных Л. узнікла ў 6—11 ст. у Індыі. Аналіз аперацый складаннЯ, адымання, множання і дзялення Л. спрыяў узнікненню навукі пра Л.арыфметыкі. Узнікненне дробавых (рацыянальных) Л. звязана з патрэбамі праводзіць вымярэнні. Напр., даўжыня вымяралася адкладаннем адрэзка, прынятага за адзінку; аднак адзінка вымярэння не заўсёды ўкладвалася цэлую колькасць разоў, што вяло да дзялення цэлага на часткі. Патрэба ў дакладным выражэнні адносін велічынь (напр., адносіны дыяганалі квадрата да яго стараны) прывяла да ўводу ірацыянальных Л. Пры рашэнні лінейных і квадратных ураўненняў паводле фармальных правіл іншы раз атрымліваліся адмоўныя і ўяўныя Л., якім быў нададзены строгі сэнс — узнікла алгебра. Неабходнасць вывучаць фіз. працэсы, неперарыўныя ў прасторы і часе (напр., рух цела), стымулявала ўвядзенне сапраўдных Л. і паняцця лікавай прамой, што з’явілася асновай стварэння матэм. аналізу. Далейшае развіццё паняцця Л. прывяло да камплексных лікаў, гіперкамплексных лікаў, р-адычных лікаў.

Літ.:

Нечаев В.И. Числовые системы. М., 1975;

Бейкер А. Введение в теорию чисел: Пер. с англ. Мн., 1995.

В.І.Бернік.

т. 9, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)