БОРН

(Born) Макс (11.12.1882, г. Вроцлаў, Польшча — 5.1.1970),

нямецкі фізік-тэарэтык, адзін са стваральнікаў квантавай механікі. Замежны чл. Расійскай (1924) і АН СССР (1934) і інш. акадэмій. Скончыў Гётынгенскі ун-т. Праф. ун-таў у Берліне і Гётынгене (1915—33), у Кембрыджы і Эдынбургу (1933—53). Навук. працы па дынаміцы крышт. рашоткі, квантавай і кінетычнай тэорый кандэнсаваных газаў і вадкасцяў, атамнай фізіцы і тэорыі адноснасці, філас. праблемах фізікі і тэорыі пазнання. Упершыню (1926) даў імавернасную інтэрпрэтацыю хвалевай функцыі, прапанаваў спосаб разліку электронных абалонак атама, распрацаваў метад рашэння квантава-мех. задач аб сутыкненні часціц, заснаваны на тэорыі ўзбурэнняў (борнаўскае прыбліжэнне), разам з Н.Вінерам увёў у квантавую механіку паняцце аператара. Заснаваў гётынгенскую школу тэарэт. фізікі. Нобелеўская прэмія 1954.

Тв.:

Рус. пер. — Атмная физика. 3 изд М., 1970;

Эйнштейновская теория относительности. М., 1972;

Размышления и воспоминания физика. М., 1977.

т. 3, с. 217

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Леса1 ’тоўстая жэрдка ў хляве пад вышкамі, у каморы, дзе клалі лён’ (луп., жытк., Нар. сл.), лёска ’клінападобны папярочны драўляны брусок для замацоўвання і ўцягілення дзвярэй’ (бяроз., Шатал.), тонкія жэрдкі для агароджы’ (Ян.), ’агароджа з тонкіх пруткоў’ (Юрч., Бяльк.; светлаг., Мат. Гом., ТС), ’агароджа з тонкай ляшчыны, асінніка ці бярэзіна, пераплётнага ў станчым становішчы’ (Нас., Федар. Дад.), ц.-пал. ’плот’ (Нар. сл.), ’кій’ (бяроз., Сл. паўн.-зах.), ’насціл з дубцоў у санях’ (ТС), леса ’пляцень’ (паўдн.-усх., КЭС), леска ’агароджа’, ’сукі елкі для агароджы’ (Мат. Маг.). Укр. ліса, ліса, ліска, рус. леса, польск. łasa, laska, луж. lesa, leska, чэш. lisa, ст.-чэш. lesa, славац. lesa, ляш. Vaska, славен. lesa, серб.-харв. ље̏са, макед. леса, балг. леса, ласа, леса, ст.-слав. лѣса — з падобнымі ці блізкімі значэннямі. Прасл. lesa — ж. р. ад lesъ. Семантычнае напаўненне лексемы lesa ’будаўнічы матэрыял у выглядзе (гнуткіх) галін, тонкіх ствалоў, з якога рабіліся прымітыўныя буданы, хаціны, стрэхі’. Пазней канкрэтызаваўшыся, лексема ў адных гаворках стала называць ’галіны арэшніку, ляшчыны’ > ’ляшчыну© З другога боку, розныя перапляценні, рашоткі пераўтварыліся ў прылады для лоўлі рыбы, канчатковым вынікам гэтага развіцця, прыкладам можа служыць віц., гом. лёска ’лёска’ (Касп., Мат. Гом.) або леска ’плот’ (І. Чыгрынаў. Ішоў чалавек…). Іншыя версіі гл. Фасмер, 2, 485, 486; Слаўскі, 4, 56–60. Тое ж і ў іншых славян: балг. леса ’рашотка’, серб.-харв. ље̏са ’нары’, чэш. lisa ’верша’, ’паліца з жэрдак’, польск. łasa ’рашотка’.

Ле́са2 ’лесвіца, па якой лазяць да коміна, да пчол на дрэве’ (ТС; браг., хойн., Мат. Гом.), лёска ’лесвіца’ (браг., Мат. Гом.; браг., Нар. словатв., Ян., ТС; ц.-палес., Нар. сл.; уздз., Жд. 2, Сцяшк. Сл., Шат.), лескі, ліёскі ’тс’ (ганц., бярэз., круп., Сл. паўн.-зах.), ’прыстаўная лесвіца’ (Мал.; ляхав., Янк. Мат.: круп., Жд. 2), ’лесвіца з шырокімі прыступкамі’ (Некр.), ’прыстасаванне, каб лазіць на дрэва’ (слуц., КЭС). Да лёса© (гл.). Семантычна гэтыя лексемы можна звесці да ’астрова, лесвіца ў выглядзе ствала дрэва з адсечанымі галінамі’ — яе коса прыстаўлялі да дрэва і лазілі да борці на дрэве’. Генетычна узыходзіць да прасл. lesa. Іншыя версіі гл. Слаўскі, 4, 60–61.

Этымалагічны слоўнік беларускай мовы (1978-2017)

ВІБРАЦЫ́ЙНАЯ ТЭ́ХНІКА,

машыны, прыстасаванні і прылады, прызначаныя для стварэння, выкарыстання і вывучэння вібрацыі, для аховы ад яе шкоднага ўздзеяння. Да вібрацыйнай тэхнікі адносяцца: вібрацыйныя машыны; датчыкі, пераўтваральнікі, аналізатары, рэгістравальныя і сігнальныя прыстасаванні; пасіўныя і актыўныя вібраахоўныя прыстасаванні (дэмпферы «сухога» і вязкага трэння, дынамічныя гасільнікі ваганняў, сістэмы аўтам. кіравання рухам вібратараў і інш.).

Вібрацыйныя машыны падзяляюцца: паводле тыпу прывода — на гідраўлічныя, пнеўматычныя, электрамех. і інш.; паводле прынцыпу стварэння ваганняў — на цэнтрабежныя (вібрацыя ўзнікае пры вярчэнні дэбалансу), поршневыя, кулачковыя, крывашыпна-шатунныя, электрамагнітныя, электрадынамічныя, магнітастрыкцыйныя, п’езаэлектрычныя і інш.; паводле прызначэння — на тэхнал., транспартавальныя, дазіруючыя і выпрабавальныя. Тэхналагічныя: вібрамолаты, вібрапагружальнікі (для апускання ў грунт і выцягвання з яго паляў, труб, шпунта і інш.), вібрапляцоўкі (для вібраўшчыльнення бетону), вібрацыйныя рашоткі (для выбівання апок), вібраштампы (для штампавання жалезабетонных вырабаў складанай канфігурацыі), вібракаткі (для ўшчыльнення дарожнага пакрыцця; гл. Каток дарожны) і інш. Транспартавальныя: вібрацыйныя транспарцёры, канвееры, пад’ёмнікі, бункеры, помпы (для транспартавання вадкіх, сыпкіх, кускавых матэрыялаў, вырабаў на адлегласць да 100 м і болей). Дазіравальныя — вібрацыйныя дазатары (для адмервання вадкіх і сыпкіх матэрыялаў). Выпрабавальныя: вібрастэнды (для вібрацыйных выпрабаванняў вырабаў або для каліброўкі датчыкаў вібравымяральнай апаратуры), машыны для выпрабавання будынкаў пры штучных сейсмічных нагрузках і інш. Сродкі вібрацыйнай тэхнікі выкарыстоўваюцца ў буд-ве, машынабудаванні, горнай і хім. прам-сці, сельскай і камунальнай гаспадарцы і інш.

Літ.:

Быховский И.И. Основы теории вибрационной техники. М., 1969;

Вибрационные массообменные аппараты. М., 1980;

Варсанофьев В.Д., Кольман-Иванов Э.Э. Вибрационная техника в химической промышленности. М., 1985.

У.М.Сацута.

т. 4, с. 137

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЧЫШЧА́ЛЬНЫЯ ЗБУДАВА́ННІ,

комплекс інж. збудаванняў для ачысткі сцёкавых водаў і апрацоўкі асадкаў. Падзяляюцца на збудаванні механічнай, біялагічнай і фізіка-хімічнай ачысткі. Выбар схемы ачысткі залежыць ад складу і колькасці сцёкавых водаў, характарыстыкі вадаёма, куды яны адводзяцца, ці тэхнал. патрабаванняў да вады ў выпадку іх паўторнага выкарыстання.

Да збудаванняў мех. ачысткі адносяцца: прыстасаванні для працэджвання (рашоткі, драбілкі, сіты) і сепарацыі (пескаўлоўнікі, тлушчаўлоўнікі, маслааддзяляльнікі, нафтапасткі, адстойнікі, гідрацыклоны, цэнтрыфугі). Збудаванні біял. ачысткі ў прыродных умовах — палі фільтрацыі і арашэння, біял. сажалкі (бываюць з сістэмамі прымусовай аэрацыі). Біял. ачыстка ў штучных умовах ажыццяўляецца на біяфільтрах і ў аэратэнках. Збудаванні фіз.-хім. ачысткі: флататары, сарбцыйныя, экстракцыйныя і інш. калоны, нейтралізатары, іонаабменныя фільтры, гіперфільтрацыйныя ўстаноўкі, збудаванні эл.-хім. ачысткі і інш. Вузел апрацоўкі асадку ўключае збудаванні па стабілізацыі, кандыцыянаванні, абязводжванні асадку. На невялікіх ачышчальных збудаваннях асадак затрымліваюць і зброджваюць у септыках і адстойніках. На буйных станцыях стабілізацыя асадку робіцца ў анаэробных (метатэнкі) ці аэробных стабілізатарах. Пры выкарыстанні метатэнкаў для утылізацыі газу, што выдзяляецца, прадугледжваюцца газгольдэры. Для абязводжвання стабілізаваных асадкаў у прыродных умовах служаць глеістыя пляцоўкі. Механічнае абязводжванне робяць вакуум-фільтрамі, фільтрпрэсамі, цэнтрыфугамі. Абеззаражваюць ачышчаную ваду ў кантактных рэзервуарах з дапамогай хлору ці азону. Устаноўкі па абеззаражванні бактэрыцыднымі прамянямі ўключаюць выпрамяняльную лямпу, уманціраваную ў трубаправод, які транспартуе ваду, што апрацоўваецца. Лакальныя ачышчальныя збудаванні прадпрыемстваў камплектуюцца вузламі мех. і фіз.-хім. ачысткі. Гарадскія ачышчальныя збудаванні, якія прымаюць сумесь бытавых і вытв. сцёкаў, уключаюць мех. і біял. ачыстку, абеззаражванне ачышчаных сцёкавых водаў і апрацоўку асадку. Збудаванні ачысткі атм. сцёку складаюцца з адстойнікаў і фільтраў (біял. сажалак). Да ачышчальных збудаванняў адносяцца таксама збудаванні для ачысткі паветра.

В.Г.Аўсянікаў.

т. 2, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЭ́НА

(ад лац. antenna рэя),

прыстасаванне для выпрамянення і прыёму электрамагнітных хваляў, адзін з асн. элементаў ліній радыёсувязі. Перадавальная антэна пераўтварае энергію эл.-магн. ваганняў, засяроджаную ў выхадных вагальных ланцугах радыёперадатчыка, у энергію радыёхваляў. Прыёмная антэна выконвае адваротнае пераўтварэнне энергіі радыёхваляў у энергію ВЧ-ваганняў і аддзяляе карысны сігнал ад перашкод. У большасці перадавальных антэн інтэнсіўнасць выпрамянення залежыць ад напрамку (накіраванасць выпрамянення), што павышае напружанасць эл.-магн. хвалі ў бок найб. выпрамянення (раўназначная эфекту, выкліканаму павышэннем выпрамяняльнай магутнасці); вызначаецца каэфіцыентам накіраванага дзеяння (КНДз). Залежнасць напружанасці эл. поля ад напрамку назірання графічна адлюстроўваецца дыяграмай накіраванасці (ДН). Звычайна ДН мае многапялёсткавы характар (вынік інтэрферэнцыі выпрамянення ад асобных элементаў антэны); адрозніваюць гал. пялёстак і бакавыя. Чым большыя памеры антэны ў параўнанні з даўжынёй хвалі, тым вузейшы гал. пялёстак, большы яго КНДз і большая колькасць бакавых пялёсткаў. Асн. характарыстыкі антэны (ДН, КНДз і ўваходнае супраціўленне, што характарызуе ўзгадненне антэны з лініяй перадачы) аднолькавыя ў рэжымах перадачы і прыёму. Паводле канструкцыі і прынцыпу работы антэны бываюць: бягучай хвалі антэна, дыяпазонная антэна, рамачная антэна, хваляводна-рупарная антэна, люстраная антэна, вібратарная, шчылінная, лінзавая, антэнная рашотка і інш.

Вібратарная антэна — праваднік даўжынёй L = 0,5λ, дзе λ — даўж. хвалі; КНДз=1,64, для яго павелічэння звычайна выкарыстоўваюць многавібратарныя антэны (гл. Тэлевізійная антэна), выкарыстоўваюць ва ўсіх дыяпазонах радыёхваляў. Шчылінная антэна — метал. экран з прамавугольнымі адтулінамі; выкарыстоўваюць у дыяпазоне ЗВЧ. Лінзавая антэна складаецца з абпрамяняльніка (вібратарная, шчылінная або інш. антэны) і дыэлектрычнай лінзы, якая факусіруе хвалю ў вузкі прамень; КНДз да 10​4; выкарыстоўваецца ў радыёлакацыйных і вымяральных устаноўках. Антэнная рашотка — сістэма слабанакіраваных антэн, якія ў рэжыме перадачы далучаюцца да агульнага генератара праз сістэму размеркавання магутнасці, у рэжыме прыёму — да агульнага прыёмніка; КНДз прыблізна роўны здабытку КНДз асобнага выпрамяняльніка і іх колькасці. Асаблівасць — магчымасць павароту ДН адносна самой рашоткі (эл. сканіраванне), што дасягаецца зменай рознасці фазаў паміж суседнімі выпрамяняльнікамі з дапамогай спец. фазавярчальнікаў па камандах ЭВМ.

А.А.Юрцаў.

т. 1, с. 406

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНІЗАТРАПІ́Я

(ад грэч. anisos неаднолькавы + tropos напрамак),

1) у фізіцы — залежнасць фіз. (мех., аптычных, магн. і інш.) уласцівасцяў рэчыва ад напрамку. Натуральная анізатрапія — характэрная асаблівасць крышталёў; абумоўлена іх сіметрыяй і выяўляецца тым больш, чым яна меншая. Анізатрапія некаторых вадкасцяў (напр., вадкіх крышталёў) тлумачыцца асіметрыяй і пэўнай арыентацыяй малекул. У аморфных і полікрышталічных рэчывах анізатрапія бывае пры наяўнасці прыроднай (напр., драўніна) або штучнай тэкстуры (напр., пры пракатцы ліставой сталі зерні металу арыентуюцца ўздоўж напрамку пракаткі, у выніку чаго ствараецца анізатрапія мех. уласцівасцяў). Анізатрапія многіх уласцівасцяў крышталёў, напр. лінейнага цеплавога расшырэння, электраправоднасці, пругкіх уласцівасцяў, характарызуецца значэннямі адпаведных пастаянных уздоўж гал. восі сіметрыі і ўпоперак да яе. Аптычная анізатрапія выяўляецца ў выглядзе падвойнага праменепраламлення, дыхраізму, змен характару палярызацыі і вярчэння плоскасці палярызацыі святла. Натуральная аптычная анізатрапія крышталёў абумоўлена неаднолькавасцю ў розных напрамках поля сіл, якія ўтрымліваюць атамы ці іоны рашоткі. Штучная анізатрапія ствараецца ў ізатропных асяроддзях пад уздзеяннем вонкавых сіл ці палёў, што вызначаюць у асяроддзях пэўныя напрамкі, напр., у выніку ўздзеяння пругкіх дэфармацый, эл. поля, магн. поля (гл. Катона—Мутона эфект, Фарадэя эфект).

2) Анізатрапія ў геалогіі абумоўлена мікраслаістасцю, упарадкаванай арыентацыяй зерняў і крышталёў і мікратрэшчынаватасцю горных парод і мінералаў. Крышталі розных мінералаў выяўляюць анізатрапію розных уласцівасцяў: слюды — аптычных, мех. (спайнасці, пругкасці, трываласці); дыстэну — цвёрдасці; кварцу, турмаліну — аптычных, п’езаэлектрычнага эфекту; магнетыту — ферамагнітных; кальцыту — аптычных. Анізатрапія некаторых мінералаў выкарыстоўваецца ў прыладабудаванні. Анізатрапія масіваў горных парод вызначаецца ўпарадкаванымі лінейнымі ці плоскаснымі элементамі будовы (стратыфікаваныя асадкавыя і метамарфічныя тоўшчы горных парод з лінейна арыентаванымі структурамі, слаістасцю, макратрэшчынаватасцю і інш.). Пры горных работах найб. значэнне маюць дэфармацыйныя ўласцівасці парод.

3) У батаніцы — здольнасць розных органаў адной і той жа расліны займаць рознае становішча пры аднолькавым ўздзеянні пэўнага фактара вонкавага асяроддзя. Напр., пры бакавым асвятленні расліны яе верхавінка выгінаецца ў бок крыніцы святла, а лісцевыя пласцінкі займаюць перпендыкулярнае напрамку прамянёў становішча.

Літ.:

Шаскольская М.П. Очерки о свойствах кристаллов. 2 изд. М., 1978;

Сиротин Ю.М., Шаскольская М.П. Основы кристаллофизики. 2 изд. М., 1979.

т. 1, с. 368

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРО́НЗА

(франц. bronze),

1) у тэхніцы — сплаў на аснове медзі, у якім асн. дабаўкамі з’яўляюцца волава, алюміній, берылій, крэмній, свінец, хром і інш. элементы, за выключэннем цынку (яго сплаў з меддзю наз. латунь) і нікелю (медна-нікелевы сплаў). Адпаведна бронза называецца алавянай, алюмініевай і г.д. Бронза мае значную трываласць, пластычнасць, цвёрдасць, высокія антыкаразійныя і антыфрыкцыйныя ўласцівасці.

Алавяная бронза мае да 11% волава і невялікія дабаўкі цынку, свінцу, фосфару, нікелю. Вызначаецца малым каэф. трэння па сталі. З яе робяць рабочы слой падшыпнікаў слізгання і антыкаразійную арматуру. Алюмініевая бронза мае 11% алюмінію і дабаўкі жалеза, нікелю і марганцу, якія павялічваюць трываласць сплаву. Устойлівая да сернай і большасці арган. кіслот. З яе робяць стужкі, палосы на спружыны, пруткі, трубы і фасонныя адліўкі. Берыліевая бронза мае да 2,4% берылію. Ідзе на выраб мембран, спружын, кантактаў, шасцерняў. Крэмніевая бронза мае 1—3% крэмнію, а таксама нікель, цынк, свінец, марганец. Вызначаецца высокімі мех. характарыстыкамі, антыфрыкцыйнымі ўласцівасцямі, добра зварваецца, паяецца і апрацоўваецца рэзаннем. З яе робяць пруткі, стужкі, сеткі, рашоткі, электроды. Марганцавая бронза вызначаецца павышанай каразійнай устойлівасцю, гарачатрываласцю. Свінцовістая бронза можа мець да 60% свінцу. Ёю ўкрываюць (тонкім слоем) укладышы і ўтулкі, якія працуюць у рэжыме слізгання. Хромістая бронза вызначаецца высокай электра- і цеплаправоднасцю. Ідзе на выраб калектараў эл. рухавікоў, электродаў.

2) У мастацтве — адзін з найб. пашыраных матэрыялаў для дэкар.-прыкладных вырабаў і скульптуры. Ліццё з алавянай бронзы (сплаў медзі з волавам, часам з дадаткамі інш. металаў) дае магчымасць з макс. дакладнасцю ўзнаўляць найдрабнейшыя дэталі мадэлі. Добра паддаецца апрацоўцы (чаканцы, паліроўцы, таніроўцы). Матэрыял пластычна вельмі выразны, на паверхні скульптуры (манум., дэкар., станковай) стварае своеасаблівыя святлоценявыя эфекты. Пад дзеяннем атм. з’яў набывае спецыфічныя адценні (паціну).

Вырабы з бронзы вядомы ў мастацтве Месапатаміі (3-е тыс. да н.э.), Стараж. Егіпта (2-е тыс. да н.э.); час росквіту — эпоха італьян. Адраджэння. З 17 ст. маст. ліццё з бронзы пашырана ў Францыі. Вядомыя творы з бронзы ў бел. мастацтве: помнікі Я.Коласу (1972, скульпт. З.Азгур), Я.Купалу (1972, А.Анікейчык, Л.Гумілеўскі, А.Заспіцкі), М.Багдановічу (1981, С.Вакар) у Мінску, Ф.Скарыне (1974, А.Глебаў) у Полацку, С.Буднаму (1980, С.Гарбунова) у Нясвіжы і інш.

т. 3, с. 260

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАГРА́ФІЯ

(ад грэч. holos увесь, поўны + ...графія),

метад атрымання поўнага аб’ёмнага відарыса аб’екта, заснаваны на інтэрферэнцыі і дыфракцыі кагерэнтных хваль; галіна фізікі, што вывучае заканамернасці запісу, узнаўлення і пераўтварэння хвалевых палёў рознай прыроды (аптычных, акустычных і інш.). Галаграфію вынайшаў (1948) і атрымаў першыя галаграмы (ГЛ) найпрасцейшых аб’ектаў Д.Габар. У 1962—63 амер. фізікі Э.Лэйтс і Ю.Упатніекс выкарысталі для атрымання ГЛ лазер, а сав. фізік Ю.М.Дзенісюк (1962) прапанаваў метад запісу аб’ёмных ГЛ. У 1960-я г. створаны тэарэт. і эксперым. асновы галаграфіі.

Аб’ёмны відарыс аб’екта фіксуецца на ГЛ у выглядзе інтэрферэнцыйнай карціны, створанай прадметнай хваляй (ПХ), адбітай ад аб’екта, і кагерэнтнай з ёй апорнай хваляй (АХ). У адрозненне ад фатаграфіі, дзе зафіксаваны відарыс аптычны, ГЛ дае прасторавае размеркаванне амплітуды і фазы ПХ. Паколькі ПХ не плоская, ГЛ мае структуру нерэгулярнай дыфракцыйнай рашоткі. Інфармацыя аб размеркаванні амплітуды ПХ запісваецца ў выглядзе кантрасту інтэрферэнцыйнай карціны, а фазы — у выглядзе формы і перыяду інтэрферэнцыйных палос (гл. Інтэрферэнцыя святла). Пры асвятленні галаграмы АХ у выніку дыфракцыі святла ўзнаўляецца амплітудна-фазавае размеркаванне поля ПХ. ГЛ пераўтварае частку АХ у копію ПХ, пры ўспрыманні якой вокам ствараецца ўражанне непасрэднага назірання аб’екта. Галаграфія мае шэраг спецыфічных уласцівасцей, адрозных ад фатаграфіі: ГЛ узнаўляе аб’ёмны (монахраматычны або каляровы) відарыс аб’екта, кожны ўчастак ГЛ дазваляе ўзнавіць увесь відарыс аб’екта, аб’ёмныя ГЛ Дзенісюка ўзнаўляюцца пры дапамозе звычайных крыніц святла (сонечнае асвятленне, лямпа напальвання), галаграфічны запіс мае вял. надзейнасць і інфарм. ёмістасць, што вызначае шырокі спектр практычнага выкарыстання галаграфіі: для атрымання аб’ёмных відарысаў твораў мастацтва, стварэння галаграфічнага кіно, для неразбуральнага кантролю формы складаных аб’ектаў, вывучэння неаднароднасцей матэрыялаў, захоўвання і апрацоўкі інфармацыі, для візуалізацыі акустычных і эл.-магн. палёў і інш.

На Беларусі даследаванні па галаграфіі пачаліся ў 1968 у Ін-це фізікі АН і праводзяцца ў ін-тах фіз. і фіз.-тэхн. профілю АН, БДУ і інш. Распрацаваны фіз. прынцыпы дынамічнай галаграфіі, развіты метады апрацоўкі інфармацыі і пераўтварэння прасторавай структуры лазерных пучкоў (П.А.Апанасевіч, А.А.Афанасьеў, Я.В.Івакін, А.С.Рубанаў, Б.І.Сцяпанаў і інш.). Створаны галаграфічныя метады для даследавання дэфармацый і вібрацый аб’ектаў, рэльефу паверхні, уласцівасцей плазмы, сістэмы аптычнай памяці (У.А.Піліповіч, А.А.Кавалёў, Л.В.Танін і інш.), развіты метады радыё- і акустычнай галаграфіі (П.Дз.Кухарчык, А.С.Ключнікаў, М.А.Вількоцкі).

Літ.:

Кольер Р., Беркхарт К., Лин Л. Оптическая голография: Пер. с англ. М., 1973;

Островский Ю.И. Голография и ее применение. Л., 1973;

Денисюк Ю.Н. Изобразительная голография // Наука и человечество, 1982. М., 1982;

Рубанов А.С. Некоторые вопросы динамической голографии // Проблемы современной оптики и спектроскопии. Мн., 1980.

А.С.Рубанаў.

т. 4, с. 446

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)