АМФАТЭ́РНАСЦЬ

(ад грэч. amphoteros і той і гэты),

здольнасць некаторых хім. злучэнняў праяўляць у залежнасці ад умоў кіслотныя або асн. ўласцівасці. Уласцівая вадзе, аксідам і гідраксідам алюмінію, цынку, хрому і інш., некаторым амінам, амінакіслотам, іанітам.

Пры дысацыяцыі ў водных растворах амфатэрныя злучэнні (амфаліты) утвараюць H​+ і OH​- іоны (напр., Cr​3++3OH​- ⇄ Cr(OH)3 ⇄ H​++CrO​-2+H2O). Перавага тыпу ўласцівасцяў амфатэрных гідраксідаў залежыць ад месца элемента ў перыяд. сістэме. Амфатэрнасць злучэнняў карыстаюцца ў хім. аналізе для раздзялення элементаў.

т. 1, с. 327

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́ЛЬСАН, Уілсан (Wilson) Чарлз Томсан Рыс (14.2.1869, Гленкарс, каля г. Эдынбург, Вялікабрытанія — 15.11.1959), англійскі фізік. Чл. Брытанскага каралеўскага т-ва (1900). Скончыў Манчэстэрскі (1887) і Кембрыджскі (1892) ун-ты. У 1900—34 у Кембрыджскім ун-це (з 1925 праф.). Навук. працы па малекулярнай, атамнай і ядзернай фізіцы. Даследаваў кандэнсацыю пары пры ўздзеянні розных агентаў. Устанавіў, што пры пэўных умовах зараджаныя іоны становяцца цэнтрамі кандэнсацыі вадзяной пары і рух іонаў становіцца бачным (1897); стварыў прыладу для назірання і фатаграфавання слядоў (трэкаў) зараджаных часціц (гл. Вільсана камера). Нобелеўская прэмія 1927.

т. 4, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУМАРА́ЛЬНАЯ РЭГУЛЯ́ЦЫЯ,

адзін з механізмаў кіравання і каардынацыі фізіял. працэсаў у чалавека і жывёл у зменлівых умовах асяроддзя. Ажыццяўляецца праз вадкія асяроддзі (тканкавая вадкасць, лімфа, кроў) з дапамогай біялагічна актыўных рэчываў (неспецыфічныя метабаліты, гармоны, медыятары, пептыды, роставыя фактары, іоны і інш.). Прадукты абмену рэчываў уздзейнічаюць энда-, пара- або аўтакрынна на эфектарныя тканкі, канцы чуллівых нерваў (хемарэцэптары), нерв. цэнтры і выклікаюць гумаральным або рэфлекторным шляхам пэўныя рэакцыі арганізма. Гумаральная рэгуляцыя падпарадкавана нервовай рэгуляцыі і разам з ёй складае адзіную сістэму нейрагумаральнай рэгуляцыі, якая забяспечвае нармальнае функцыянаванне арганізма ў зменлівых умовах асяроддзя.

У.М.Калюноў.

т. 5, с. 531

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛЬВАНАТЭ́ХНІКА

(ад гальвана... + тэхніка),

галіна прыкладной электрахіміі, якая займаецца працэсамі электралітычнага асаджэння металаў на паверхні вырабаў. Уключае гальванастэгію, гальванапластыку і розныя спосабы электрахім. апрацоўкі металаў (аксідаванне, анадзіраванне, электралітычнае паліраванне і інш.). Асновы закладзены Б.С.Якобі, які ў 1838 адкрыў гальванапластыку і распрацаваў спосабы яе выкарыстання. Выкарыстоўваецца ў аўтамабілебудаванні, авіяц., радыётэхн. і электроннай прам-сці, у паліграфіі і інш.

Тэхнал. працэсы гальванатэхнікі заснаваны на з’яве электролізу. Асн. кампанент электраліту — солі металу, які ідзе на пакрыццё. У растворы яны распадаюцца на дадатна зараджаныя іоны металу (катыёны) і адмоўна зараджаныя групы (аніёны). Іоны металу асаджаюцца на адмоўным полюсе (катодзе), якім з’яўляюцца самі вырабы ці іх матрыцы. Аноды — пласціны або пруткі металу, які раствараецца ў электраліце і асаджаецца. У некаторых працэсах (напр., храміраванне, залачэнне) ужываюцца нерастваральныя аноды, а солі асноўнага металу дадаюцца звонку. Гальванатэхн. працэсы выконваюцца ў гальванічных ваннах (стацыянарных, паўаўтаматычных, ваннах-агрэгатах). Стацыянарныя ванны маюць прылады для вымярэння т-ры і прыстасаванні для перамешвання электраліту. Неметал. вырабы і матрыцы (з гіпсу, воску, пластмасы і інш.) для электраправоднасці пакрываюць графітам або тонкім слоем хімічна асаджанага металу; металічныя апрацоўваюцца акісляльнікамі для атрымання пасіўнай плёнкі, што дапамагае аддзяліць копію ад матрыцы. На з’яве нераўнамернага растварэння металу пры аноднай палярызацыі заснавана электралітычнае паліраванне.

У.М.Сацута.

т. 4, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІСЛЯ́ЛЬНА-АДНАЎЛЯ́ЛЬНЫ ПАТЭНЦЫЯ́Л, рэдакс-патэнцыял,

значэнне свабоднай энергіі дынамічна ўраўнаважанай акісляльна-аднаўляльнай сістэмы ў электрахім. Працэсе; раўнаважны электродны патэнцыял. Характарызуе пэўнае электралітычнае асяроддзе. Напр., у водным растворы хлорнага жалеза іоны Fe​3+ захопліваюць свабодныя электроны з электрода з неакісляльнага металу (плаціна, золата) і аднаўляюцца да іонаў Fe​2+. Пасля дасягнення пэўнай канцэнтрацыі Fe​2+ у растворы пачынаецца адваротны працэс. Праз пэўны час скорасці рэакцый акіслення-аднаўлення ўраўнаважваюцца і на электродзе ўстанаўліваецца акісляльна-аднаўляльны патэнцыял, які вызначаецца ў вольтах. Чым большая акісляльная здольнасць асяроддзя, тым вышэйшы акісляльна-аднаўляльны патэнцыял. Карыстаюцца ў электрахім. метадах сінтэзу рэчываў, пры даследаваннях у біял. і аналітычнай хіміі.

т. 1, с. 192

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛУТАМІ́НАВАЯ КІСЛАТА́,

α-амінаглутаравая кіслата, HOOCCH2CH2CHNH2COOH; важнейшая заменная амінакіслата. Уваходзіць у састаў практычна ўсіх прыродных бялкоў і інш. біялагічна актыўных рэчываў (глутатыёну, фоліевай к-ты, фасфатыдаў). У свабодным стане ёсць ва ўсіх тканках жывых арганізмаў, займае ключавое становішча ў азоцістым абмене. Сукупнасць абарачальных ферментатыўных рэакцый пераносу амінагруп у жывых арганізмаў (пераамінаванне) адбываецца ў сістэме глутамінавай кіслаты — глутамін-α-кетаглутаравая к-та. Біясінтэз глутамінавай кіслаты — галоўны шлях асіміляцыі аміяку ў многіх арганізмаў. Глутамінавая кіслата ўдзельнічае ў біясінтэзе многіх заменных амінакіслот, пурынаў; у клетках ц. н. с. пераносіць іоны калію K​+ і абясшкоджвае аміяк, выконвае функцыю медыятара. Выкарыстоўваецца як смакавая дабаўка да харч. прадуктаў і як лекавы сродак.

т. 5, с. 303

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПРАСНЕ́ННЕ ВАДЫ́,

апрацоўка марской вады ці вады моцнамінералізаванай крыніцы з мэтай зніжэння канцэнтрацыі раствораных соляў да ступені (звычайна да 1 г/л), пры якой вада становіцца прыдатнай на піццё ці гасп. мэты. Робіцца ў апрасняльніках.

Пры апрасненні вады выпарэннем салёную ваду награваюць, пару кандэнсуюць. Пры апрасненні вады вымарожваннем выкарыстоўваюць уласцівасць салёнай вады пры замярзанні ўтвараць крышталі прэснага лёду, паміж якімі знаходзяцца крышталі салёнага лёду. Пры раставанні ў вадкі стан спачатку пераходзяць крышталі салёнага лёду, што і дазваляе аддзяліць салёную ваду ад прэснай. Пры электролізным спосабе катыёны і аніёны раствораных у вадзе соляў пад дзеяннем пастаяннага эл. поля выдаляюцца праз спец. мембраны, якія не прапускаюць прэснай вады. Гіперфільтрацыйны метад заснаваны на ўласцівасці мембран, зробленых з ацэтылцэлюлозы ці паліамідных смолаў, пры ціску, вышэйшым за асматычны, прапускаць малекулы вады, але затрымліваць гідратызаваныя іоны раствораных у вадзе соляў.

т. 1, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЫФЕРАМАГНЕТЫ́ЗМ

(ад анты... + ферамагнетызм),

магнітаўпарадкаваны стан рэчыва, якому ў адсутнасць знешняга магн. поля адпавядае антыпаралельная арыентацыя магн. момантаў суседніх атамаў (іонаў) і нулявая намагнічанасць рэчыва ў цэлым. Выяўлены ў канцы 1920-х г., тэарэтычна абгрунтаваны Л.Неелем (1932, Францыя) і Л.Д.Ландау (1933).

Антыферамагн. структура — сістэма ўстаўленых адна ў адну магн. падрашотак, у вузлах якіх знаходзяцца іоны аднаго віду з аднолькавымі па значэнні і напрамку магнітнымі момантамі. У знешнім магн. полі антыферамагнетыкі слаба намагнічваюцца. Пры т-рах вышэй за Нееля пункт (TN) антыферамагн. парадак разбураецца за кошт цеплавога руху атамаў (іонаў) і антыферамагнетык пераходзіць у парамагн. стан (фазавы пераход 2-га роду), таму пры T=TN тэмпературныя залежнасці магн. успрымальнасці, цеплаёмістасці і інш. маюць анамаліі. На частотах, блізкіх да ўласнай частаты прэцэсіі магн. момантаў падрашотак, назіраецца антыферамагнітны рэзананс.

Літ.:

Преображенский А.А., Бишард Е.Г. Магнитные материалы и элементы. 3 изд. М., 1986.

Р.М.Шахлевіч.

т. 1, с. 402

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯНЕАРГАНІ́ЧНАЯ ХІ́МІЯ,

неарганічная біяхімія, галіна біяхіміі, што вывучае комплексы іонаў металаў з бялкамі, нуклеінавымі к-тамі, ліпідамі і нізкамалекулярнымі прыроднымі злучэннямі; даследуе ролю іонаў металаў у выкананні біял. функцый прыродных металакомплексаў. Пераважна даследуюцца іоны Na​+, K​+, Ca​2+, Mg​2+, Mn​2+, Fe​2+, Fe​3+, Cu​2+, Co​2+, Mo​2 і Zn​2+, якія ёсць у малекулах біялагічна актыўных рэчываў, напр. сідэхромы, іанафоры (хелатавальныя агенты шчолачных металаў), ферыцін, трансферыны, цэрулаплазмін, гемэрытрын, гемацыянін, металаферменты, карбаксіпептыдаза A, карбаангідраза, медзьзмяшчальныя аксідазы, ферадаксіны, гемы, гемаглабін і міяглабін, цытахромы, перакеідазы і каталазы, хларафіл, карыноіды, комплексы нуклеазідаў, нуклеатыдаў і нуклеінавых к-т, вітаміну B6 і інш.

Склалася на мяжы біяхіміі і неарган. хіміі. Выкарыстоўвае метады хіміі каардынацыйных злучэнняў і квантавай хіміі. У б. СССР фундамент біянеарганічнай хіміі заклалі працы М.Я.Вольпіна, М.У.Валькенштэйна, А.Я.Шылава, К.Б.Яцымірскага і інш., далейшае развіццё атрымала ў працах па мадэляванні азотфіксавальных ферментных сістэм з выкарыстаннем комплексаў малібдэну (А.Я.Шылаў), іанафораў (Ю.А.Аўчыннікаў, В.Ц.Іваноў) і інш.

На Беларусі працы па біянеарганічнай хіміі праводзяцца пераважна ў Ін-це біяарган. хіміі АН. Вывучаны цытахромы P-450 і інш. гемазмяшчальныя ферментныя сістэмы (Дз.І.Мяцеліца, С.А.Усанаў, В.Л.Чашчын), змадэляваны акісляльна-аднаўляльныя ферменты (цытахромы P-450, пераксідазы, каталазы) з выкарыстаннем іонаў і комплексаў жалеза, медзі і малібдэну (Мяцеліца). Вынікі даследаванняў біянеарганічнай хіміі выкарыстоўваюцца для сінтэзу фармакалагічных прэпаратаў.

Літ.:

Хьюз М. Неорганическая химия биологических процессов: Пер. с англ. М., 1983;

Метелица Д.И. Моделирование окислительно-восстановительных ферментов. Мн., 1984.

Дз.І.Мяцеліца.

т. 3, с. 176

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЗО́ТНЫЯ ЎГНАЕ́ННІ,

мінеральныя і арган. рэчывы, якія выкарыстоўваюцца для забеспячэння раслін азотам. Падзяляюцца на арганічныя ўгнаенні (гной, торф, кампост), якія акрамя азоту маюць у сабе інш. элементы, мінеральныя ўгнаенні (выпускаюцца прам-сцю ў цвёрдым ці вадкім стане) і зялёныя ўгнаенні (гл. Сідэрацыя). У мінеральных азот можа быць у аміячнай (NH3), аміячна-нітратнай (NH3 і NO3), нітратнай (NO3) і аміднай (NH2) формах. Асн. віды мінер. азотных угнаенняў: аміячныя, аманійныя, нітратныя, аманійна-нітратныя, амідныя, аманійна-нітратна-амідныя.

Аміячныя і аманійныя ўгнаенні: вадкі аміяк, аміячная вада, сульфаты амонію, амонію-натрыю. Раствараюцца ў глебавай вадзе, значная частка іонаў амонію звязваецца ў маларухомую форму, якая пад уздзеяннем спецыфічных бактэрый глебы пераходзіць у больш рухомую нітратную форму і засвойваецца раслінамі. Выкарыстоўваюцца для ўсіх с.-г. культур на някіслых глебах і кіслых пры іх вапнаванні. Нітратныя ўгнаенні: натрыевая і кальцыевая салетры. Іоны натрыю і кальцыю паглынаюцца цвёрдай фазай глебы і раслінамі спажываюцца менш, чым нітратны азот, што прыводзіць да падшчалочвання глебы. Выкарыстоўваюцца на ўсіх глебах для ўнясення перад сяўбой і для ўсіх відаў раслін у перыяд вегетацыі. Аманійна-нітратныя ўгнаенні: аміячная салетра, сумесі сульфат-нітрат амонію, вапнава-аміячная салетра. Выкарыстоўваюцца ў розных кліматычных зонах для розных глебаў. Амідныя ўгнаенні бываюць хутка дзейныя (карбамід) і павольна дзейныя (урэаформ—карбаміда-фармальдэгідныя ўгнаенні). Аманійна-нітратна-амідныя ўгнаенні — канцэнтраваныя растворы карбаміду, нітрату амонію і іх растворы ў аміячнай вадзе (аміякаты). Эфектыўныя пры ўнясенні ў глебу для падкормкі раслін, аміякаты — для невегетуючых с.-г. культур. На Беларусі (Гродзенскі азотна-тукавы завод) вырабляюць аміячную салетру, карбамід, вадкія ўгнаенні і сульфат амонію.

Літ.:

Агрохимия. М., 1982;

Баранов П.А., Алейнов Д.П., Олевский В.М. Азотные растворы... // Химия в сельском хозяйстве. 1983. № 5.

т. 1, с. 171

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)