КУ́ПЕРА ЭФЕ́КТ,

утварэнне звязаных пар часціц у выраджанай сістэме ферміёнаў. Вядзе да звышцякучасці часціц, якая для зараджаных часціц выяўляецца як звышправоднасць. Прадказаны ў 1956 Л.Н.Куперам. Пакладзены ў аснову сучаснай мікраскапічнай тэорыі звышправоднасці.

Паводле тэорыі Купера, ферміёны з процілегла накіраванымі імпульсамі пры адсутнасці знешніх палёў могуць аб’ядноўвацца ў пары (купераўскія пары) з-за ўзаемадзеяння шляхам абмену віртуальнымі фанонамі, якое мае характар прыцяжэння. Купераўскія пары маюць цэлалікавы спін і з’яўляюцца базонамі, што не абмяжоўвае лік часціц у пэўным энергетычным стане. Малая велічыня энергіі сувязі электронаў у парах абумоўлівае існаванне нізкатэмпературнай звышправоднасці металаў і звышцякучасці вадкага гелію-3.

Л.І.Камароў.

т. 9, с. 35

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛЕПТО́НЫ (ад грэч. leptos тонкі, лёгкі),

элементарныя часціцы, якім уласцівы электраслабае ўзаемадзеянне і гравітацыйнае ўзаемадзеянне. Адрозніваюцца ад адронаў, кваркаў і інш. адсутнасцю моцнага ўзаемадзеяння, напр. паміж сабой, паміж Л. і кваркамі. Маюць спін1/2 і адносяцца да ферміёнаў. Падзяляюцца на 3 сям’і (пакаленні): электрон і электроннае нейтрына, μ​ мезон і мюоннае нейтрына, τ​ Л. і таоннае нейтрына, а таксама іх антычасціцы (пазітроны, μ​+ мезон, τ​+ Л.) і адпаведныя антынейтрына; з кожнай з гэтых сем’яў звязваюць асобны лептонны лік. Л. не маюць структуры, утвараюць вадародападобныя атамарныя станы тыпу пазітронія, мюонія і інш.

Літ.:

Окунь Л.Б. Лептоны и кварки. 2 изд. М., 1990.

І.С.Сацункевіч.

т. 9, с. 210

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНЫ МО́МАНТ,

фізічная велічыня, якая характарызуе магн. ўласцівасці часцінак рэчыва і макраскапічных цел. М.м плоскага замкнутага контура з эл. токам — вектар pm = ISn , дзе I — сіла току; S — плошча, абмежаваная контурам; n — адзінкавы вектар нармалі, накіраваны перпендыкулярна да плоскасці контура ў адпаведнасці з правілам правага вінта. Адзінка М.м. ў СІампер-квадратны метр (А∙м​2).

М.м. атамаў і малекул абумоўлены прасторавым рухам электронаў (арбітальны М.м.), спінавымі М.м. электронаў (гл. Спін), вярчальным рухам малекул (вярчальны М.м.), а таксама М.м. атамных ядраў (гл. Магнетон). М.м. макраскапічнага цела роўны вектарнай суме М.м. мікрачасціц, з якіх гэтае цела складаецца, і вызначае яго намагнічанасць.

т. 9, с. 483

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАРА́ДАВАЯ ЦО́ТНАСЦЬ, C-цотнасць,

квантавы лік сапраўды нейтральнай элементарнай часціцы (сістэмы часціц), які вызначае паводзіны яе хвалевай функцыі пры зарадавым спалучэнні. У працэсах, абумоўленых гравітацыйнымі, эл.-магн. або моцнымі ўзаемадзеяннямі, З.ц. захоўваецца (не мяняецца).

Пры зарадавым спалучэнні хвалевая функцыя сапраўды нейтральнай часціцы не мяняецца (дадатная З.ц.) або мяняе знак (адмоўная З.ц.). Для фатона З.ц. адмоўная: C = −1, гэта вынікае з таго, што пры зарадамі спалучэнні эл. зарады, а значыць, і эл.магн. палі, квантамі якіх з’яўляюцца фатоны, мяняюць знак. Для π​0− і η​0− мезонаў, якія распадаюцца на 2 γ-кванты, C = 1. Сапраўды нейтральнай сістэмай з’яўляецца пазітроній (звязаны стан электрона і пазітрона), для якога C = (−1)​J+l, дзе J — поўны спін сістэмы, l — арбітальны момант іх адноснага руху. Гэтай формулай вызначаецца таксама З.ц. сапраўды нейтральных мезонаў, пабудаваных з кварка і адпаведнага антыкварка.

Літ.:

Окунь Л.Б. Лептоны и кварки. 2 изд. М., 1990.

А.У.Астапенка.

т. 6, с. 536

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЮО́НЫ, мю-мезоны,

нестабільныя зараджаныя элементарныя часціцы, якія маюць спін ½, час жыцця 2,2·10​−6 с і масу прыкладна ў 207 разоў большую за масу электрона; адносяцца да лептонаў. Адмоўна зараджаны (μ​) і дадатна зараджаны (μ​+) М. з’яўляюцца антычасціцамі адзін аднаго.

Эксперыментальна выяўлены ў касм. праменях амер. фізікамі К.Андэрсанам і С.Недэрмаерам (1936—37). Асн. крыніцы М. — распад піонаў і каонаў (гл. Мезоны), якія інтэнсіўна нараджаюцца пры сутыкненнях адронаў, працэс нараджэння пар μ​ μ​+ фатонамі высокіх энергій, распады гіперонаў, «зачараваных» часціц і інш. Па сваіх уласцівасцях ва ўсіх вядомых узаемадзеяннях μ​ паводзіць сябе аналагічна электрону, ад якога адрозніваецца толькі масай (μ — е-універсальнасць). Слабае ўзаемадзеянне М. выклікае іх распад на электрон (ці пазітрон) і адпаведнае нейтрына, што вызначае час жыцця М. у вакууме. У рэчыве павольныя М. страчваюць энергію на іанізацыю атамаў і могуць спыняцца. Пры гэтым μ​ прыцягваецца ядром атама і ўтвараецца мезаатам, а μ​+ далучае да сябе электрон і ўтвараецца мюоній.

І.С.Сацункевіч.

т. 11, с. 62

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ІЗАТАПІ́ЧНАЯ ІНВАРЫЯ́НТНАСЦЬ квантавая сіметрыя, звязаная з аднолькавымі паводзінамі пэўных груп элементарных часціц у моцным ці электраслабым узаемадзеяннях. Адрозніваюць моцную і слабую І.і., якія сваімі ўласцівасцямі нагадваюць сіметрыю адносна паваротаў у 3-мернай прасторы.

Моцная І.і. абумоўлена існаваннем ізатапічных мультыплетаў — сем’яў адронаў з аднолькавымі квантавымі лікамі (барыённым зарадам, дзіўнасцю, спінам і інш.), блізкімі па значэнні масамі спакою, аднак рознымі эл. зарадамі. Моцнае ўзаемадзеянне застаецца аднолькавым у межах аднаго мультыплета і не залежыць ад эл. зараду часціцы. Колькасць часціц у мультыплеце N=2J+1, дзе J — ізатапічны спін. Напр., пратон і нейтрон утвараюць ізатапічны дублет (J=​1/2), пі-мезоны (π​+, π​0, π​) — ізатапічны трыплет (J=1). Слабая І.і. звязана з тым, што лептоны, кваркі і некаторыя інш. часціцы таксама маюць ізатапічную мультыплетнасць, аднак масы спакою часціц у межах аднаго мультыплета могуць значна адрознівацца. Слабая І.і. дазволіла дакладна вызначыць законы электраслабага ўзаемадзеяння і выявіць прамежкавыя вектарныя базоны, якія з’яўляюцца яго пераносчыкамі. Гл. таксама Інварыянтнасць.

І.С.Сацункевіч.

т. 7, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШПРАВО́ДНАСЦЬ,

з’ява скачкападобнага знікнення эл. супраціўлення ў некаторых праводзячых матэрыялах пры ахаладжэнні іх ніжэй за т.зв. крытычную тэмпературу. Адкрыта нідэрл. фізікам Г.Камерлінг-Онесам (1911).

Крытычныя т-ры Tk традыцыйных звышправаднікоў знаходзяцца ў інтэрвале 0,1—23 К. Вынікам адсутнасці супраціўлення з’яўляецца існаванне незатухальных токаў: у замкнутым току, наведзеным у кольцы са звышправадніка, доўгі час адсутнічаюць прыкметы затухання. З. суправаджаецца ідэальным дыямагнетызмам: магн. поле не пранікае ў тоўшчу звышправадніка, калі напружанасць поля не перавышае некаторае крытычнае значэнне (эфект Майснера). Адваротны пераход са звышправоднага стану ў нармальны (з канечным значэннем эл. супраціўлення) адбываецца пры павелічэнні т-ры або пры накладанні магутнага магн. поля. З. абумоўлена звышцякучасцю электронаў праводнасці, якая ўзнікае пры нізкіх т-рах дзякуючы ўтварэнню звязаных пар электронаў з процілеглымі спінамі — купераўскіх пар. Такія пары маюць нулявы спін і падпарадкоўваюцца Бозе—Эйнштэйна статыстыцы. Пры T<Tk адбываецца т.зв. бозе-кандэнсацыя купераўскіх пар. Гл. таксама Высокатэмпературная звышправоднасць, Купера эфект.

Літ.:

Буккель В. Сверхпроводимость: Пер. с нем. М., 1975;

Вонсовский С.В., Изюмов Ю.А, Курмаев Э.З. Сверхпроводимость переходных металлов, их сплавов и соединений. М., 1977;

Дмитренко И.М. В мире сверхпроводимости. Киев, 1981.

Л.І.Камароў.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МО́МАНТ І́МПУЛЬСУ,

фізічная велічыня, якая характарызуе меру вярчальнага руху цела (сістэмы цел) адносна пункта або восі. Паняцце «М.і.» дастасавальнае таксама да эл.-магн., гравітацыйнага і інш. фізічных палёў. Выкарыстоўваецца пры рашэнні многіх задач механікі, фізікі і тэхнікі.

М.і. матэрыяльнага пункта з імпульсамі r адносна цэнтра (полюса) O роўны вектарнаму здабытку: L = r × p , дзе r — радыус-вектар пункта, праведзены з цэнтра O. Для сістэмы n такіх пунктаў L = i=1 n ri × pi і адносна восі вярчэння выражаецца таксама праз вуглавую скорасць ω і момант інерцыі I дадзенай сістэмы (напр., цвёрдага цела) адносна гэтай восі: L = I ω . Змены М.і. сістэмы цел адбываюцца пад уздзеяннем толькі знешніх сіл і залежаць ад іх моманту M (гл. Момант сілы). З 2-га закону Ньютана (гл. Ньютана законы механікі) вынікае dL / dt = M . Калі M = 0 будзе пастаянным і мае месца закон захавання М.і. (гл. Захавання законы). Роўнасць M = 0 мае таксама месца пры руху пункта (цела) ў полі цэнтральных сіл, пры гэтым яго рух падпарадкоўваецца закону плошчаў (гл. Кеплера законы), што выкарыстоўваецца ў нябеснай механіцы, тэорыі руху ШСЗ, касм. лятальных апаратаў і інш. Большасці элементарных часціц уласцівы ўласны, унутраны М.і. (гл. Спін). Адзінка М.і. ў СІкілаграм-метр у квадраце за секунду.

т. 10, с. 516

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙТРЫ́НА (італьян. neutrino памяншальнае ад neutrone нейтрон),

незараджаная элементарная часціца з групы лептонаў. Мае спін1/2 і масу, намнога меншую за масу электрона. Па стат. уласцівасцях адносіцца да ферміёнаў. Удзельнічае ў слабых і гравітацыйных узаемадзеяннях (гл. Узаемадзеянні элементарных часціц, з-за вельмі малой масы слаба ўзаемадзейнічае з рэчывам, характарызуецца вял. пранікальнай здольнасцю, напр., свабодна праходзіць праз Зямлю і Сонца.

Вядома 3 тыпы Н.: электроннае Н. νe, мюоннае Н. νµ, таоннае Н. ντ і адпаведныя ім антычасціцы νe, νµ, ντ (звесткі аб ντ і ντ ускосныя і магчыма, што ντ ντ ). Кожны з тыпаў Н. пры ўзаемадзеянні з інш. часціцамі можа пераўтварыцца ў адпаведны зараджаны лептон, а калі масы спакою Н. адрозныя ад 0 і лептонныя зарады не захоўваюцца, магчымы асцыляцыі Н. — пераўтварэнні аднаго тыпу Н. ў другі (прапанавана Б.М.Пантэкорва ў 1957). Існаванне электроннага Н. прадказана В.Паўлі (1930—33) на падставе законаў захавання энергіі і імпульсу ў рэакцыях β-распаду, эксперыментальна νe зарэгістравана амер. фізікамі Ф.Райнесам і К.Коўэнам ў 1953—56. Выпрамяняюцца Н. пры пераўтварэннях атамных ядраў (β-распадзе, захопе электронаў і мюонаў), распадах элементарных часціц і інш. Працэсы, якія вядуць да ўтварэння Н., адбываюцца ў рэчыве Зямлі і яе атмасферы за кошт касм. выпрамянення, у нетрах Сонца, зорак і інш. (гл. Нейтрынная астраномія, Нейтрынная астрафізіка). Штучна Н. атрымліваюць з дапамогай магутных ядз. выпрамяняльнікаў, ядз. рэактараў, паскаральнікаў зараджаных часціц.

Літ.:

Марков М.А Нейтрино. М., 1964;

Понтекорво Б.М. Нейтрино. М., 1966;

Рекало М.П. Нейтрино. Киев, 1986.

С.Сацункевіч.

т. 11, с. 277

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНЕТЫ́ЗМ (ад грэч. magnētis магніт),

сукупнасць з’яў, звязаных з асаблівай формай узаемадзеяння паміж эл. токамі, токамі і магнітамі (целамі з магнітным момантам) і паміж магнітамі; раздзел фізікі, які вывучае гэтае ўзаемадзеянне і ўласцівасці рэчываў (магнетыкаў), у якіх яно праяўляецца.

Магн. ўзаемадзеянне цел перадаецца праз магнітнае поле, якое з’яўляецца адной з форм існавання электрамагнітнага поля. Нягледзячы на непарыўную сувязь паміж эл. і магн. з’явамі, магн. з’явы прынцыпова адрозніваюцца ад электрычных з-за адсутнасці ў прыродзе адасобленых магн. полюсаў (магн. зарадаў; гл. Манаполь магнітны). Крыніца эл. поля — эл. зарад, магн. поля — рухомы эл. зарад (электрычны ток), пераменнае (віхравое) эл. поле або элементарныя часціцы з адметным ад нуля ўласным магн. момантам. М. атамаў, малекул і макраскапічных цел вызначаецца ў канчатковым выніку М. элементарных часціц (у асн. магн. момантам электронаў). У залежнасці ад характару ўзаемадзеяння часціц-носьбітаў магн. моманту адрозніваюць М. рэчываў з атамным магн. парадкам (ферамагнетызм, ферымагнетызм, антыферамагнетызм) і М. слабаўзаемадзейных часціц (парамагнетызм, дыямагнетызм). Магн. ўласцівасці рэчываў, макраскапічныя праяўленні іх М. тлумачацца на аснове законаў квантавай механікі, разглядаюцца ў рамках тэорыі эл.-магн. поля, тэрмадынамікі і статыстычнай фізікі. М. праяўляецца ва ўсіх фізіка-хім. працэсах, што адбываюцца ў рэчыве. Магн. палі ёсць у зорак, Сонца, некат. планет Сонечнай сістэмы, у касм. прасторы. Яны ўплываюць на рух зараджаных часціц, вызначаюць многія астрафіз. і геамагн. з’явы (сонечныя ўспышкі, зямныя магн. буры і г.д.). Магн. ўласцівасці рэчываў шырока выкарыстоўваюцца ў электра- і радыётэхніцы, вылічальнай тэхніцы і тэлемеханіцы, аўтаматыцы, прыладабудаванні, марской і касм. навігацыі і інш.

З’ява М. вядома са старажытнасці. З 12 ст. ў Еўропе пачаў шырока выкарыстоўвацца магн. компас. Вучэнне пра М. развівалі У.Гільберт, Р.Дэкарт, Ф.Эпінуе, Ш.Кулон. У 1820 Х.К.Эрстэд адкрыў магн. поле эл. току, А.М.Ампер устанавіў законы магн. ўзаемадзеяння токаў. У 1830-я г. К.Гаўс і В.Вебер развілі матэм. тэорыю геамагнетызму (гл. Зямны магнетызм). Грунтоўную трактоўку з’яў М. на аснове ўяўленняў аб рэальнасці эл.-магн. поля даў М.Фарадэй, які ў 1831 адкрыў электрамагнітную індукцыю. У 1872 Дж.Максвел стварыў агульную тэорыю эл.-магн. з’яў (гл. Максвела ўраўненні). Уласцівасці фера- і парамагнетыкаў вывучалі А.Р.Сталетаў (1872) і П.Кюры (1895). У 1905 П.Ланжэвэн пабудаваў тэорыю дыямагнетызму, у 1925 С.Гаўдсміт і Дж.Уленбек адкрылі спін i М. электрона. У 1930-я г. пабудавана квантавамех. тэорыя магн. уласцівасцей свабодных электронаў (В.Паўлі, Л.Д.Ландау). Развіццё фізікі магн. з’яў прывяло да сінтэзавання новых магнітных матэрыялаў (ферытаў для ВЧ- і ЗВЧ-прыстасаванняў, высокакаэрцытыўных злучэнняў, празрыстых ферамагнетыкаў і інш.).

На Беларусі даследаванні па фізіцы магн. з’яў праводзяцца ў Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН Беларусі, БДУ, Бел. ун-це інфарматыкі і радыёэлектронікі і інш.

Літ.:

Вонсовский С.В. Магнетизм. М., 1971;

Маттис Д. Теория магнетизма: Введение в изучение кооперативных явлений: Пер. с англ. М., 1967;

Браун У.Ф. Микромагнетизм: Пер. с англ. М., 1979.

А.І.Болсун, У.М.Сацута.

т. 9, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)