ДАЎЖЫ́НЯ ў геаметрыі,

лікавая характарыстыка працягласці лініі.

Д. адрэзка прамой — адлегласць паміж яго канцамі, вымераная адрэзкам, прынятым за адзінку даўжыні. Д. ломанай — сума Д. яе звёнаў. Д. дугі крывой лінііліміт Д. ломаных, упісаных у гэтую дугу, калі лік звёнаў неабмежавана павялічваецца і Д. найбольшага звяна імкнецца да нуля. Д. S плоскай лініі, зададзенай у прамавугольных каардынатах ураўненнем y=f(x), a≤x≤b, дзе f(x) — мае неперарыўную вытворную f′(x), вылічаецца па формуле S = a b 1 + [f′(x)]2 dx . Для прасторавай лініі, зададзенай у параметрычнай форме x=x(t), y=y(t), z=z(t), α≤t≤β, S = a b [x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt .

т. 6, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗБЕ́ЖНАСЦЬ,

уласцівасць матэм. аб’ектаў (напр., паслядоўнасці, рада, інтэграла) імкнуцца да канечнага ліміту, адно з асн. паняццяў матэм. аналізу. Выяўляецца, калі пры вывучэнні якога-н. аб’екта будуецца паслядоўнасць больш простых аб’ектаў, якая набліжаецца да зададзенага аб’екта. Напр., для вылічэння даўжыні акружнасці выкарыстоўваецца паслядоўнасць даўжынь перыметраў многавугольнікаў, упісаных у акружнасць. Паняцце З. дастасавальнае як да лікавых, так і да паслядоўнасцей інш. аб’ектаў, напр., паслядоўнасці функцый, пунктаў, абласцей, бесканечных матрыц, бесканечных вызначнікаў. Акрамя класічнага паняцця З. выкарыстоўваюцца яго розныя абагульненні. Напр., калі паслядоўнасць частковых сум рада неабмежавана ўзрастае (у класічным сэнсе рад разбягаецца), але паслядоўнасць сярэдніх арыфм. гэтых сум мае ліміт, то гавораць, што рад збягаецца ў сэнсе сярэдняга арыфметычнага.

А.А.Гусак.

т. 7, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫ́ЗНАЧАНЫ ІНТЭГРА́Л,

канечны ліміт інтэгральнай сумы функцыі 𝑓(x) на адрэзку [a, b]; адно з асн. паняццяў матэм. аналізу. Абазначаецца a b 𝑓(x) dx .

Геаметрычна вызначаны інтэграл выражае плошчу «крывалінейнай трапецыі», абмежаванай адрэзкам [a, b] восі Ox, графікам функцыі 𝑓(x) і ардынатамі пунктаў графіка, якія маюць абсцысы a і b.

Паводле вызначэння вызначаны інтэграл a b 𝑓(x) dx = lim λ 0 k 1 n 𝑓′(xk′)Δxk , дзе Δxk = xk xk1 — даўжыні элементарных адрэзкаў, якія атрымліваюцца ў выніку падзелу адрэзка [a, b] на n элементарных адрэзкаў пунктамі a = x0 < x1 < x2 < ... < xn = b (k = 1,2,...,n) ; λ — даўжыня найбольшага адрэзка Δxk; xk — некаторы пункт адрэзка [xk1, xk]. Асн. сродак вылічэння вызначанага інтэграла — формула Ньютана—Лейбніца a b 𝑓(x) dx = F(b) F(a) , дзе F(x) — любая першаісная для 𝑓(x), г.зн. F′(b) = 𝑓(x) .

Вызначаны інтэграл мае разнастайныя дастасаванні ў матэматыцы, фізіцы, механіцы, біялогіі, тэхніцы. З яго дапамогай вылічаюць плошчы крывалінейных фігур, паверхняў, даўжыні дуг крывых ліній, аб’ёмы цел, каардынаты цэнтра цяжару, моманты інерцыі, шлях цела, работу і інш.

А.А.Гусак.

т. 4, с. 308

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСАБЛІ́ВЫ ПУНКТ у матэматыцы, 1) Асаблівы пункт крывой, зададзенай ураўненнем F (x, y)=0, пункт M0 (x0, y0), у якім роўныя нулю абедзве першыя частковыя вытворныя функцыі F (x, y) (напр., пачатак каардынат пункт 0). Асаблівы пункт бывае: двайны пры ўмове, што не ўсе другія частковыя вытворныя роўныя нулю; трайны, калі разам з першымі вытворнымі ператвараюцца ў нуль у пункце M0 і ўсе другія вытворныя, але не ўсе трэція вытворныя роўныя нулю; і гэтак далей.

2) Асаблівы пункт дыферэнцыяльнага ўраўнення — пункт, у якім адначасова роўныя нулю лічнік і назоўнік правай часткі ўраўнення d y d x = P (x,y) Q (x,y) , дзе P і Q — неперарыўна дыферэнцавальныя функцыі (гл. Дыферэнцыяльныя ўраўненні). У залежнасці ад паводзін інтэгральных крывых у наваколлі Асаблівага пункта адрозніваюць: вузел, сядло, фокус, цэнтр і інш. 3) Асаблівы пункт. адназначнай аналітычнай функцыі — пункт, у якім парушаецца аналітычнасць функцыі (гл. Аналітычныя функцыі). Адрозніваюць асаблівы пункт ізаляваны (у наваколлі асаблівага пункта няма іншых асаблівых пунктаў), папраўны (ізаляваны асаблівы пункт з канечным лімітам lim z a f(z) = b ), полюс або неістотна асаблівы пункт (ізаляваны асаблівы пункт і lim z a f(z) = , істотна асаблівы пункт (ліміт не існуе). Для мнагазначных аналітычных функцый паняцце асаблівага пункта больш складанае. Кожны асаблівы пункт з’яўляецца перашкодай пры аналітычным прадаўжэнні ўздоўж крывой, якая праходзіць праз яго.

В.І.Громак.

т. 2, с. 18

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 &gt; 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

вы́браць сов.

1. в разн. знач. вы́брать; (материалы, цитаты — ещё) извле́чь; (путём голосования — ещё) избра́ть; (подходящий момент, время — ещё) улучи́ть;

в. матэрыя́л па гу́сце — вы́брать материа́л по вку́су;

в. мя́ккі каранда́ш — вы́брать мя́гкий каранда́ш;

в. сабе́ жаніха́ — вы́брать себе́ жениха́;

в. час — вы́брать (улучи́ть) вре́мя;

в. лімі́т — вы́брать лими́т;

в. сме́цце з насе́ння — вы́брать сор из семя́н;

в. усю́ ваду́ са сту́дні — вы́брать всю во́ду из коло́дца;

в. пазплотн. вы́брать паз;

в. чле́наў праўле́ння — избра́ть (вы́брать) чле́нов правле́ния;

2. отобра́ть;

в. са́мыя спе́лыя я́блыкі — отобра́ть са́мые зре́лые я́блоки;

3. (копая, извлечь) вы́копать;

в. бу́льбу — вы́копать карто́фель;

4. (убрать урожай огурцов, лука и т.п.) убра́ть, собра́ть;

5. прост. (съесть) сло́пать;

◊ (спіць —) хоць зу́бы вы́беры (спит) без за́дних ног

Беларуска-рускі слоўнік, 4-е выданне (2012, актуальны правапіс)