АДЗІ́НКІ ФІЗІ́ЧНЫХ ВЕЛІЧЫ́НЯЎ,

фізічныя велічыні, якім паводле вызначэння прысвоена лікавае значэнне, роўнае адзінцы. Перадаюцца мерамі і захоўваюцца ў выглядзе эталонаў.

Гістарычна першымі з’явіліся адзінкі фізічных велічыняў для вымярэння даўжыні, масы (вагі), часу, плошчы, аб’ёму. Выбраныя адвольна, яны садзейнічалі ўзнікненню ў розных краінах аднолькавых па назве і розных па памеры адзінак (напр., аршын, валока, гарнец, пуд, фут, цаля і інш.). Развіццё навукі і тэхнікі, эканам. сувязяў паміж краінамі патрабавала уніфікацыі адзінак. У 18 ст. ў Францыі прынята метрычная сістэма мер, на яе аснове пабудаваны метрычныя сістэмы адзінак. Упарадкаванне адзінак фізічных велічыняў праведзена на аснове Міжнароднай сістэмы адзінак (СІ). Даўнія меры і адзінкі фізічных велічыняў вывучае метралогія гістарычная.

Адзінкі фізічных велічыняў падзяляюцца на сістэмныя, што ўваходзяць у пэўную сістэму адзінак, і пазасістэмныя адзінкі. Сярод сістэмных адрозніваюць асноўныя, якія выбіраюцца адвольна (напр., ампер, секунда і інш.), вытворныя, што ўтвараюцца пры дапамозе ўраўненняў сувязі паміж фізічнымі велічынямі (напр., метр у секунду, кілаграм на кубічны метр і інш.), і дадатковыя (напр., радыян). У СІ 17 вытворных адзінак маюць спец. найменні: бекерэль, ват, вебер, вольт, генры, герц, грэй, джоўль, кулон, люкс, люмен, ньютан, ом, паскаль, сіменс, тэсла, фарад. Вельмі вял. ці малыя лікавыя значэнні фіз. велічыняў для зручнасці перадаюць кратнымі адзінкамі і дольнымі адзінкамі.

Літ.:

Деньгуб В.М., Смирнов В.Г. Единицы величин: Слов.-справ. М., 1990;

Сена Л.А. Единицы физических величин и их размерности. 3 изд. М., 1988;

Болсун А.И., Вольштейн С.Л. Единицы физических величин в школе. Мн., 1983.

А.І.Болсун.

т. 1, с. 109

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІСТЭРЭ́ЗІС (ад грэч. hystēresis адставанне),

неадназначная залежнасць фіз. велічыні, якая апісвае стан або ўласцівасці цела, ад велічыні, што характарызуе знешнія ўздзеянні. Абумоўлены неабарачальнымі зменамі ў целе, якія выяўляюцца пад уплывам знешніх фактараў, у выніку чаго цела пасля спынення ўплыву на яго характарызуецца астаткавымі ўласцівасцямі (астаткавай намагнічанасцю, электрызацыяй, дэфармацыяй і інш.) і адпаведна гэтаму гістэрэзіс наз. магнітным, дыэлектрычным, пругкім і інш.

Магнітны гістэрэзіс — адставанне змен намагнічанасці J ферамагнетыка ад змен напружанасці Н знешняга магн. поля. Звычайна ферамагнетык намагнічаны неаднародна, ён разбіты на вобласці спантаннай намагнічанасці (дамены), дзе велічыня намагнічанасці аднолькавая, а напрамкі яе розныя. Пад уздзеяннем знешняга магн. поля колькасць і памеры даменаў, намагнічаных ўздоўж поля, павялічваюцца за кошт іншых даменаў. Пры некаторым значэнні Н-Hm намагнічанасць узору дасягае свайго найб. значэння і больш не змяняецца пры павелічэнні Н. Калі Н змяншаць, залежнасць J (Н) апішацца крывой, якая ідзе вышэй за папярэднюю. Плошча пятлі гістэрэзісу, утворанай гэтымі крывымі, прапарцыянальная энергіі, страчанай знешнім магн. полем за 1 цыкл перамагнічвання. Велічыня J=Jr пры Н = 0 наз. астаткавай намагнічанасцю, а велічыня Hc, пры якой J=0, — каэрцытыўнай сілай. Дыэлектрычны гістэрэзіс — адставанне змен палярызацыі сегнетаэлектрыка (ці антысегнетаэлектрыка) ад змен напружанасці знешняга эл. поля. Таксама тлумачыцца даменнай структурай дыэлектрыка. Па форме пятля дыэл. гістэрэзісу падобная на пятлю магн. Гістэрэзіс (гл. Сегнетаэлектрычны гістэрэзіс). Пругкі гістэрэзіс — адставанне змен дэфармацый цела ад змен мех. напружанняў. Узнікае пры наяўнасці пластычных дэфармацый (гл. Пластычнасць). Мех. апрацоўка і ўвядзенне дамешкаў прыводзяць да ўмацавання матэрыялу і пругкі гістэрэзіс назіраецца пры большых напружаннях.

П.С.Габец.

т. 5, с. 277

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́РУСЫ (ад лац. virus яд),

найдрабнейшыя субмікраскапічныя арганізмы няклетачнай будовы, якія складаюцца з нуклеінавай кіслаты і бялковай абалонкі (капсіды). Вірусы — унутрыклетачныя паразіты, якія выклікаюць вірусныя хваробы чалавека і жывёл, а таксама вірусныя хваробы раслін. вірус бактэрый — бактэрыяфагі. Адкрыты рус. вучоным Дз.І.Іваноўскім (1892), пашыраны ўсюды. Апісана каля 500 формаў вірусаў, якія шкодзяць цеплакроўнай жывёле і больш за 600 формаў вірусаў, што заражаюць вышэйшыя расліны. Вірусы існуюць у форме пазаклетачнай віруснай часціцы (вірыёна) і ўнутрыклетачнай (комплекс Вірус — клетка). Размнажаюцца толькі ў жывых клетках арганізма-гаспадара, выкарыстоўваючы іх ферментатыўны апарат. Нуклеінавая кіслата (РНК пераважна ў фітапатагенных вірусах і ДНК — у вірусах, якія шкодзяць чалавеку і жывёле) — носьбіт спадчыннасці і інфекцыйнасці. Форма вірусаў вызначаецца будовай бялковай абалонкі: палачка- або ніткападобная, сферычная, бацылападобная і інш.; памеры ад 15 да 2000 нм і больш. Вывучае вірусы — вірусалогія.

У вірусах адсутнічае ўласны абмен рэчываў і рэпрадукцыя цалкам залежыць ад метабалічнай актыўнасці клетак гаспадара. Пранікаючы ў клетку, яны накіроўваюць працэсы сінтэзу на рэпрадукцыю саміх вірусаў і ўводзяць дапаўняльную генетычную інфармацыю, якая адмоўна ўплывае на метабалізм клетак. У працэсе рэпрадукцыі фітапатагенных вірусаў узнікаюць генетычна змененыя формы (штамы), што мае вял. значэнне ў эвалюцыі. Вірусы раслін распаўсюджваюцца мех. шляхам, пыльцой, насеннем, з пасадачным матэрыялам, натуральнымі пераносчыкамі (нематодамі, тлямі, грыбамі і інш.).

Літ.:

Биология вирусов животных: Пер. с англ. Т. 1—2. М., 1977;

Гиббс А.,Харрисон Б. Основы вирусологии растений: Пер. с англ. М., 1978;

Власов Ю.И., Ларина Э.И. Сельскохозяйственная вирусология. М., 1982.

Ж.В.Блоцкая.

т. 4, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КАЯ ІНТЭГРА́ЛЬНАЯ СХЕ́МА,

інтэгральная схема з вялікай колькасцю схемных элементаў (высокай ступені інтэграцыі); асн. элементная база ЭВМ і радыёэлектронных сродкаў. Аналагавыя вялікія інтэгральныя схемы маюць да 800, лічбавыя — да некалькіх дзесяткаў тысяч элементаў. Звышвялікая інтэгральная схема мае на парадак большую ступень інтэграцыі. Вялікія інтэгральныя схемы забяспечваюць надзейнасць радыёэлектроннай тэхнікі, яе малыя габарыты і масу, нізкую спажываную магутнасць.

Асаблівасць вялікіх інтэгральных схем — малыя памеры яе элементаў і міжэлементных злучэнняў (да 1,2 мкм пры выкарыстанні фоталітаграфіі і менш за 1 мкм пры рэнтгенаўскай і электроннай літаграфіі); скарачэнне колькасці знешніх вывадаў для забеспячэння хуткадзеяння, напр. у аднакрышталёвых ЭВМ. Адрозніваюць вялікія інтэгральныя схемы цвердацельныя (маналітныя; бываюць на аснове структур метал-дыэлектрык-паўправаднік і біпалярных структур) і гібрыдныя (дыскрэтныя бяскорпусныя паўправадніковыя прыборы і інтэгральныя схемы размешчаны на плёначнай падложцы; маюць больш шырокі частотны дыяпазон у параўнанні з маналітнымі; недахопы — меншая шчыльнасць упакоўкі элементаў, меншая надзейнасць). Праектаванне і тэхнал. рэалізацыя вялікіх інтэгральных схем ажыццяўляюцца пры дапамозе ЭВМ.

Вялікія інтэгральныя схемы выкарыстоўваюцца як запамінальныя прыстасаванні, аналага-лічбавыя і лічбавыя пераўтваральнікі, узмацняльнікі, у мікрапрацэсарных камплектах і інш. На Беларусі навук. распрацоўкі і вытворчасць вялікіх інтэгральных схем і звышвялікіх інтэгральных схем ажыццяўляюцца ў навук.-вытв. аб’яднаннях «Інтэграл», «Карал», канцэрне «Планар», Бел. ун-це інфарматыкі і радыёэлектронікі, Мінскім н.-д. прыладабудаўнічым ін-це, НДІ радыёматэрыялаў і інш.

Літ.:

Технология СБИС: Пер. с англ. Кн. 1—2. М., 1986;

Гурский Л.И., Степанец В.Я. Проектирование микросхем. Мн., 1991.

В.У.Баранаў, А.П.Дастанка.

т. 4, с. 380

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЛІ́НЫ, рачныя даліны,

адмоўныя, лінейна выцягнутыя формы рэльефу з агульным нахілам ад вярхоўяў да нізоўяў, утвораныя ў выніку размыўнай (эразійнай) дзейнасці цякучай вады; многія маюць тэктанічнае паходжанне. Папярочны профіль рачных Д. у залежнасці ад стадыі развіцця геал. будовы мясцовасці і інш. фактараў можа мець V-, U-, скрыне-, карытападобную і інш. формы; пачатковая форма Д. — яры і лагчыны. Д. звычайна ўключаюць рэчышча, пойму, тэрасы, схілы, каля вусця часам фарміруюцца дэльты або конусы вынасу.

Асн. працэсы ў развіцці Д. — глыбінная і бакавая эрозія, акумуляцыя адкладаў. Профіль Д. амаль заўсёды асіметрычны, што абумоўлена геал. будовай, нахілам паверхні, Карыяліса сіламі, дзеяннем грунтавых вод і інш. У плане Д. маюць клінападобную, меандрычную, пацеркападобную, прамалінейную, каленчатую форму. У вярхоўі Д. звычайна замыкаюцца схіламі, утвараючы вадазборную варонку, ледавіковы цырк (у гарах) або застаюцца адкрытымі і пераходзяць у вярхоўе суседніх Д. У адносінах да распасцірання структур і горных хрыбтоў вылучаюць падоўжныя (сінклінальныя, антыклінальныя, монаклінальныя, скідавыя Д. і Д.-грабены), папярочныя і дыяганальныя. Калі Д. праразае горны хрыбет ці ўзвышша, на ўсю шырыню ўтвараецца скразная даліна, або Д. прарыву. Паводле марфалогіі адрозніваюць горныя Д. (глыбокія і нешырокія са стромкімі схіламі) і раўнінныя Д. (звычайна шырокія, з нязначнымі нахіламі, глыбінёй і стромкасцю схілаў). Памеры залежаць ад мінулай ці сучаснай дзейнасці цякучай вады. Найб. значныя Д. пашыраны ў раёнах з вял. колькасцю ападкаў.

На Беларусі Д. займаюць каля 10% тэр. Выкарыстоўваюцца пад сенажаці і с.-г. культуры, да іх прымеркаваны шматлікія меліярац. сістэмы.

Л.У.Мар’іна.

т. 6, с. 20

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІКРАПРАЦЭ́САР (англ. microprocessor),

электронная прылада кіравання і апрацоўкі інфармацыі, якая праграмуецца і складаецца з мікрасхем (адной ці некалькіх) высокай ступені інтэграцыі (гл. Інтэгральная схема). Выкарыстоўваецца як цэнтр. працэсар, напр. у мікра-ЭВМ, як прылада кіравання і апрацоўкі інфармацыі для перыферыйных блокаў ЭВМ, а таксама ў сістэмах кіравання тэхнал. і кантрольна-выпрабавальнага абсталявання, трансп. сродкаў, касм. апаратаў і інш.

Па функцыян. магчымасцях адпавядае працэсару ЭВМ, выкананаму на 20—40 мікрасхемах малой і сярэдняй ступені інтэграцыі, мае большае хуткадзеянне, істотна меншыя памеры, энергаспажыванне і інш. (у параўнанні з інш. выліч. прыладамі). Бываюць секцыянаваныя (з мікрапраграмным кіраваннем; дазваляюць пашыраць разраднасць, функцыян. магчымасці і інш.) і аднакрыштальныя (маюць фіксаваную разраднасць і пастаянны набор камандаў). Паводле віду ўваходных сігналаў М. падзяляюць на лічбавыя (прызначаны для лічбавай апрацоўкі сігналаў) і аналагавыя (прызначаныя для работы ў даследчых выліч. комплексах; дадаткова маюць аналагава-лічбавыя і лічбава-аналагавыя пераўтваральнікі). Найб. пашыраны аднакрыштальныя маларазрадныя М. для выкарыстання ў простых сістэмах кіравання, а таксама 64-разрадныя для прафес. ЭВМ. Першы М. Intel 4004 (1971) меў да 2250 транзістараў на адным крэмніевым крышталі, працаваў на частаце 750 кГц, выконваў да 60 тыс. аперацый за секунду ў якасці цэнтр. працэсара 4-разраднай ЭВМ і быў логікавым блокам, канкрэтнае прызначэнне якога можна задаваць праграмаваннем. Сучасныя М. маюць на адным крышталі да дзесяткаў мільёнаў транзістараў, працуюць на частотах у сотні мегагерц і выконваюць мільярды аперацый за секунду.

Літ.:

Корнеев В.В., Киселев А.В. Современные микропроцессоры. М., 1998.

М.М.Далгіх.

т. 10, с. 360

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛМА́ЗНАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна горнай прам-сці па здабычы і апрацоўцы алмазаў, а таксама вытв-сці сінт. алмазаў.

Апрацоўка алмазаў існуе са старажытнасці. Алмазы былі вядомы ў Індыі з 8—7 ст. да н.э. У пач. 18 ст. яны знойдзены ў Бразіліі, у 1829 — у Расіі (на Урале), у 1866 — у Паўд. Афрыцы. З канца 19 — пач. 20 ст. Афрыка стала асн. алмазаздабыўным рэгіёнам свету. З 1955 пачалася прамысл. здабыча алмазаў у Якуціі. Аульныя запасы алмазнай сыравіны ацэньваюцца больш як у 2 млрд. каратаў (І кар — 200 мг), найб. ў Заіры, ПАР, Батсване, Анголе, Гане, Намібіі, Аўстраліі.

Па здабычы ювелірных алмазаў 1-е месца ў свеце займае Афрыка, каля палавіны тэхн. алмазаў здабываецца ў Аўстраліі. Асн. вытворцы ювелірных алмазаў — Паўд. Афрыка, Батсвана, Расія, Намібія і Ангола. Каля 80% сусв. здабычы алмазаў кантралюе найбуйнейшая ў галіне кампанія «Дэ Бірс кансалідэйтэд майнс». Збыт прыродных алмазаў на сусв. рынку ажыццяўляе манапаліст — Алмазны сіндыкат. Каля 100% ювелірнай сыравіны, якая паступае на рынак, перапрацоўваецца ў брыльянты. Ювелірныя алмазы апрацоўваюцца пераважна ў Амстэрдаме, Тэль-Авіве, Бамбеі, Нью-Йорку. Сінтэтычныя алмазы (памеры 0,01—1,2 мм) вырабляюць Расія і некат. краіны Усх. Еўропы, амер. кампанія «Джэнерал электрык», прадпрыемствы кампаніі «Дэ Бірс», у ПАР, Ірландыі і Швецыі, а таксама японскія, герм. і інш. фірмы. Сучасная штогадовая вытв-сць сінт. алмазаў ацэньваецца ў 150 млн. кар; за іх кошт на 75% забяспечваецца выраб алмазнага інструменту. На Беларусі арг-цыямі ВА «Беларусьгеалогія» вядзецца пошук алмазаў. У 1980—90 выяўлены алмазаносныя кімберліт-лампраітавыя пароды на ПдУ рэспублікі. Знойдзены 3 крышталі алмазаў. На прывазной сыравіне наладжана апрацоўка алмазаў у Гомелі (прадпрыемства «Крышталь»).

т. 1, с. 264

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІЖМАЛЕКУЛЯ́РНАЕ ЎЗАЕМАДЗЕ́ЯННЕ,

узаемадзеянне паміж малекуламі з насычанымі хім. сувязямі. Існаванне М.ў. ўпершыню ўлічыў Я.Д.Ван дэр Ваальс пры тлумачэнні ўласцівасцей рэальных газаў і вадкасцей (гл. Ван-дэр-Ваальса ўраўненне). Асобны выпадак М.ў. — вадародная сувязь.

Характар М.ў. залежыць ад адлегласці паміж малекуламі (r). Пры вялікіх r (rl, дзе l — лінейныя памеры малекул, што ўзаемадзейнічаюць) электронныя абалонкі малекул не перакрываюцца, паміж малекуламі пераважаюць сілы прыцягнення (далёкадзейныя сілы), якія маюць эл. прыроду. Далёкадзейныя сілы падзяляюць на арыентацыйныя (сілы ўзаемадзеяння паміж палярнымі малекуламі), індукцыйныя (паміж палярнымі і непалярнымі малекуламі), дысперсійныя (паміж любымі малекуламі). Пры малых r (rl), калі электронныя абалонкі малекул перакрываюцца, пераважаюць сілы адштурхоўвання, якія з’яўляюцца кароткадзейнымі сіламі. Энергія адштурхоўвання залежыць ад r так, як у выпадку абменнага ўзаемадзеяння, што прыводзіць да ўтварэння хім. сувязі. М.ў. звычайна апісваецца патэнцыяльнай энергіяй узаемадзеяння U(r) (патэнцыялам М.ў.), а сіла ўзаемадзеяння ƒ — функцыяй ƒ = −dU(r)/dr. Тэарэт. вызначэнне залежнасці U(r) ці эксперым. вымярэнне /практычна немагчымыя з-за вельмі вял. колькасці малекул, што ўзаемадзейнічаюць, і малых значэнняў r. Звычайна залежнасць U(r) падбіраюць эмпірычна так, каб праведзеныя з яе дапамогай разлікі розных характарыстык рэчыва адпавядалі эксперым. даным. М. ў. вывучаюць рознымі фіз. метадамі, асн. з іх: метад малекулярных пучкоў і дыфракцыйныя метады. Пры даследаванні М.ў. усё часцей выкарыстоўваюць разліковыя метады квантавай хіміі.

Літ.:

Межмолекулярные взаимодействия: От двухатомных молекул до биополимеров: Пер. с англ. М., 1981.

Крывая залежнасці патэнцыяльнай энергіі U(r) міжмалекулярнага ўзаемадзеяння ад адлегласці r паміж малекуламі; r = σ — найменшая магчымая адлегласць паміж нерухомымі малекуламі; ε — глыбіня патэнцыяльнай ямы (вызначае энергію сувязі малекул).

т. 10, с. 336

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛУК,

1) ручная зброя далёкага бою для кідання стрэл. Вядомы з часоў позняга палеаліту. Выкарыстоўваўся ўсімі народамі і плямёнамі (акрамя карэнных аўстралійцаў і мікранезійцаў) на вайне і паляванні да 18 ст. (у некаторых народаў Афрыкі і ў 20 ст.).

З сярэдневякоўя ў Еўропе вядомы Л. просты і складаны. Просты Л. — сагнутая ў дугу пругкая драўляная палка, канцы якой сцягнуты цецівой; быў пашыраны ў стараж. рымлян, германцаў, нарманаў, кельтаў, англа-саксаў. Складаны Л. меў драўляную аснову лукавішча, узмоцненага звонку жыламі, з унутр. боку — касцянымі пласцінкамі; канцы і дзяржанне мелі таксама касцяныя пласцінкі, асобныя часткі змацоўваліся клеем і жыламі. Цеціву скручвалі з сухажылляў жывёл, вузкіх палос скуры, валасоў, раслінных валокнаў. Меў памеры 1,2—1,6 м і кідаў стрэлы да 900 м. Складаны Л. пераўзыходзіў просты ў трываласці, далёкасці кідання стрэл і сіле паражэння цэлі. Стрэлы рабілі з прамастойнага дрэва ці трыснягу; наканечнікі — з крэменю, рогу або косці, з 1-га тыс. да н.э. — з металу.

На тэр. Беларусі крамянёвыя наканечнікі стрэл знаходзяць пры раскопках мезалітычных і неалітычных помнікаў Верхняга Падняпроўя, Панямоння, Прыпяці, а металічныя — пры раскопках помнікаў бронзавага і жал. вякоў і ранняга сярэдневякоўя. Спачатку тут карысталіся простым, а з 16 ст. складаным Л., якім была ўзброена лёгкая конніца (гл. ў арт. Лучнікі). У эпоху сярэдневякоўя Л. доўгі час спаборнічаў па баявых якасцях з агнястрэльнай зброяй. Вопытны лучнік з добрага Л. трапна страляў на 300 м і рабіў 4—5 стрэлаў за мінуту.

2) Спарт. прылада (зброя), якая выкарыстоўваецца з 19 ст. Гл. Стральба з лука. Іл. гл. таксама да арт. Зброя.

Літ.:

Разин Е.А. История военного искусства. СПб., 1994.

М.Г.Нікіцін, В.А.Юшкевіч.

т. 9, с. 360

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІЖНАРО́ДНАЯ СІСТЭ́МА АДЗІ́НАК (франц. Systéme International d’Unitées; СІ),

сістэма адзінак фізічных велічынь, прынятая 11-й Генеральнай канферэнцыяй па мерах і вазе (1960). Створана для уніфікацыі вымярэнняў фіз. велічынь і замены вял. колькасці сістэм адзінак, што ўзніклі на аснове метрычнай сістэмы мер. Складаецца з 7 асн. адзінак: даўжыні — метр, масы — кілаграм, часу — секунда, сілы эл. току — ампер, тэрмадынамічнай т-ры — кельвін, сілы святла — кандэла, колькасці рэчыва — моль; 2 дадатковых: плоскага вугла — радыян, прасторавага вугла — стэрадыян.

Ахоплівае ўсе галіны навукі і тэхнікі, устанаўлівае пэўную сувязь у вымярэннях мех., цеплавых, эл. і інш. велічынь. Асн. і дадатковыя адзінкі сістэмы даюць магчымасць пры дапамозе вызначальных ураўненняў атрымаць неабходную колькасць кагерэнтных (без увядзення якіх-н. каэфіцыентаў прапарцыянальнасці) вытворных адзінак 18 вытворных адзінак маюць спец. найменні: бекерэль, ват, вебер, вольт, генры, герц, грэй, джоўль, зіверт, кулон, люкс, люмен, ньютан, ом, паскаль, сіменс, тэсла, фарад. Найменні інш. вытворных адзінак утвараюцца праз найменні асн., дадатковых і некаторых вытворных адзінак. Напр., адзінка шчыльнасці мае найменне кілаграм на кубічны метр, адзінка ўдзельнай цеплаёмістасці — джоўль на кілаграм·кельвін. Пераважная колькасць асн. і вытворных адзінак СІ сваімі памерамі зручная для практыкі. Выкарыстанне дольных адзінак і кратных адзінак дае магчымасць падабраць патрэбныя памеры адзінак пры вымярэнні кожнай фіз. велічыні. Большасць краін свету прыняла М.с.а. для абавязковага ці пераважнага выкарыстання. У б. СССР (у т.л. у Беларусі) з 1.1.1980 было ўстаноўлена абавязковае выкарыстанне М.с.а. ва ўсіх галінах навукі, тэхнікі і нар. гаспадаркі, а таксама пры выкладанні фізіка-тэхн. дысцыплін.

Літ.:

Бурдун Г.Д. Справочник по международной системе единиц. 3 изд. М., 1980;

Болсун А.И., Вольштейн С.Л. Единицы физических величин в школе. Мн., 1983;

Стоцкий Л.Р. Физические величины и их единицы: Справ. М., 1984.

А.І.Болсун.

т. 10, с. 340

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)