«БУРА́Н»,

савецкі крылаты арбітальны карабель шматразовага выкарыстання. Адзіны беспілотны палёт з пасадкай у аўтаматычным рэжыме здзейснены 15.11.1988. Прызначаны для вывядзення на арбіту складаных касм. аб’ектаў і іх абслугоўвання, дастаўкі на Зямлю прадукцыі касм. вытв-сцяў і выканання грузапасажырскіх перавозак па маршруце Зямля — космас — Зямля.

Сканструяваны па самалётнай схеме тыпу «бясхвостка» з нізкаразмешчаным крылом падвойнай стрэлападобнасці. У насавым адсеку знаходзіцца герметычная кабіна для экіпажа (2—4 чал.) і пасажыраў (да 6 чал.), агрэгаты дыстанцыйнага кіравання і паліўныя бакі. Агульная стартавая маса да 105 т, даўж 36,4 м, выш. 16,5 м, размах крыла каля 24 м, грузападымальнасць да 30 т. Старт карабля выконваецца з дапамогай ракеты-носьбіта «Энергія», спуск і пасадка — па «самалётным» рэжыме. Гл. «Спэйс Шатл».

т. 3, с. 344

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАГРА́ФІЯ

(ад грэч. holos увесь, поўны + ...графія),

метад атрымання поўнага аб’ёмнага відарыса аб’екта, заснаваны на інтэрферэнцыі і дыфракцыі кагерэнтных хваль; галіна фізікі, што вывучае заканамернасці запісу, узнаўлення і пераўтварэння хвалевых палёў рознай прыроды (аптычных, акустычных і інш.). Галаграфію вынайшаў (1948) і атрымаў першыя галаграмы (ГЛ) найпрасцейшых аб’ектаў Д.Габар. У 1962—63 амер. фізікі Э.Лэйтс і Ю.Упатніекс выкарысталі для атрымання ГЛ лазер, а сав. фізік Ю.М.Дзенісюк (1962) прапанаваў метад запісу аб’ёмных ГЛ. У 1960-я г. створаны тэарэт. і эксперым. асновы галаграфіі.

Аб’ёмны відарыс аб’екта фіксуецца на ГЛ у выглядзе інтэрферэнцыйнай карціны, створанай прадметнай хваляй (ПХ), адбітай ад аб’екта, і кагерэнтнай з ёй апорнай хваляй (АХ). У адрозненне ад фатаграфіі, дзе зафіксаваны відарыс аптычны, ГЛ дае прасторавае размеркаванне амплітуды і фазы ПХ. Паколькі ПХ не плоская, ГЛ мае структуру нерэгулярнай дыфракцыйнай рашоткі. Інфармацыя аб размеркаванні амплітуды ПХ запісваецца ў выглядзе кантрасту інтэрферэнцыйнай карціны, а фазы — у выглядзе формы і перыяду інтэрферэнцыйных палос (гл. Інтэрферэнцыя святла). Пры асвятленні галаграмы АХ у выніку дыфракцыі святла ўзнаўляецца амплітудна-фазавае размеркаванне поля ПХ. ГЛ пераўтварае частку АХ у копію ПХ, пры ўспрыманні якой вокам ствараецца ўражанне непасрэднага назірання аб’екта. Галаграфія мае шэраг спецыфічных уласцівасцей, адрозных ад фатаграфіі: ГЛ узнаўляе аб’ёмны (монахраматычны або каляровы) відарыс аб’екта, кожны ўчастак ГЛ дазваляе ўзнавіць увесь відарыс аб’екта, аб’ёмныя ГЛ Дзенісюка ўзнаўляюцца пры дапамозе звычайных крыніц святла (сонечнае асвятленне, лямпа напальвання), галаграфічны запіс мае вял. надзейнасць і інфарм. ёмістасць, што вызначае шырокі спектр практычнага выкарыстання галаграфіі: для атрымання аб’ёмных відарысаў твораў мастацтва, стварэння галаграфічнага кіно, для неразбуральнага кантролю формы складаных аб’ектаў, вывучэння неаднароднасцей матэрыялаў, захоўвання і апрацоўкі інфармацыі, для візуалізацыі акустычных і эл.-магн. палёў і інш.

На Беларусі даследаванні па галаграфіі пачаліся ў 1968 у Ін-це фізікі АН і праводзяцца ў ін-тах фіз. і фіз.-тэхн. профілю АН, БДУ і інш. Распрацаваны фіз. прынцыпы дынамічнай галаграфіі, развіты метады апрацоўкі інфармацыі і пераўтварэння прасторавай структуры лазерных пучкоў (П.А.Апанасевіч, А.А.Афанасьеў, Я.В.Івакін, А.С.Рубанаў, Б.І.Сцяпанаў і інш.). Створаны галаграфічныя метады для даследавання дэфармацый і вібрацый аб’ектаў, рэльефу паверхні, уласцівасцей плазмы, сістэмы аптычнай памяці (У.А.Піліповіч, А.А.Кавалёў, Л.В.Танін і інш.), развіты метады радыё- і акустычнай галаграфіі (П.Дз.Кухарчык, А.С.Ключнікаў, М.А.Вількоцкі).

Літ.:

Кольер Р., Беркхарт К., Лин Л. Оптическая голография: Пер. с англ. М., 1973;

Островский Ю.И. Голография и ее применение. Л., 1973;

Денисюк Ю.Н. Изобразительная голография // Наука и человечество, 1982. М., 1982;

Рубанов А.С. Некоторые вопросы динамической голографии // Проблемы современной оптики и спектроскопии. Мн., 1980.

А.С.Рубанаў.

т. 4, с. 446

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРХІТЭКТУ́РА МАЛЫ́Х ФО́РМАЎ,

малыя архітэктурныя формы, розныя па характары і прызначэнні тыпы збудаванняў ці інш. аб’ектаў, якія дапаўняюць і дэталізуюць арх.-будаўнічую ці садова-паркавую кампазіцыю і з’яўляюцца элементам афармлення і добраўпарадкавання (мемарыяльныя стэлы, абеліскі, надмагіллі, фантаны, каскады, басейны, паркавыя павільёны, пандусы, балюстрады, агароджы, пергалы, вазы, дэкар. і прыдарожная скульптура і інш.). Ім належыць важная роля ў фарміраванні аблічча населеных пунктаў, трансп. магістраляў, зон адпачынку.

У адрозненне ад частак будынкаў і арх. дэталяў творы архітэктуры малых формаў адносна самастойныя. Ім належыць важнае месца ў кампазіцыі садова-паркавых ансамбляў, добраўпарадкаванні жылых груп, тэр. школьных і дашкольных устаноў, дзіцячых пляцовак і гарадкоў; яны — неад’емная частка сучасных населеных месцаў (электрасвяцільні, кіёскі, павільёны, гандл. аўтаматы, тэлефонныя будкі, стэнды для афіш і рэклама).

т. 1, с. 531

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯТЭХНІ́ЧНАЯ СІСТЭ́МА,

1) касмічнага карабля — сукупнасць узаемазвязаных і ўзаемазалежных біял. і тэхн. сістэм ці аб’ектаў. Напр., бартавая біятэхнічная сістэма касм. карабля складаецца з падабранага ў залежнасці ад прызначэння і працягласці палёту біякомплексу і тэхн. сродкаў для забеспячэння аптымальных умоў яго функцыянавання.

У склад біякомплексу ўваходзяць спец. падабраныя ніжэйшыя і вышэйшыя расліны, жывёлы, мікраарганізмы, здольныя выдзяляць кісларод, утылізаваць адходы жыццядзейнасці чалавека, ажыццяўляць узнаўленне прадуктаў харчавання. Удзельнікам біякомплексу з’яўляецца і сам чалавек. Да тэхн. сродкаў адносяцца падсістэмы святло- і энергазабеспячэння, тэрмарэгулявання, блокі рэгенерацыі паветра і вады, мінералізацыі адходаў, касм. аранжарэя, кухня і інш. Біятэхнічная сістэма касм. карабля з’яўляецца замкнутай, калі яна цалкам забяспечвае экіпаж кіслародам, вадой і ежай.

2) Найпрасцейшыя біятэхнічныя сістэмы: электрастымулятар сэрца, маніпулятар для работы з радыеактыўнымі рэчывамі, біяпратэзы.

т. 3, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯТЭХНІ́Я

(ад бія... + грэч. technē мастацтва, майстэрства, уменне),

раздзел паляўніцтвазнаўства, які вывучае і распрацоўвае шляхі і метады актыўнага захавання, павелічэння колькасці, паляпшэння прадукц. якасцяў і рацыянальнага выкарыстання карысных дзікіх жывёл у прыродных умовах. Прынцыпы біятэхніі выкарыстоўваюцца таксама ў рыбнай гаспадарцы (аквакультура). Практычныя метады і мерапрыемствы біятэхніі спрыяюць накіраванаму ўздзеянню на прыродныя біял. сістэмы (папуляцыі жывёл і біяцэнозы) шляхам змены фактараў навакольнага асяроддзя (кармавых, ахоўных, гнездавых умоў месцажыхарства), павелічэнню выхаду таварнай прадукцыі з адзінкі плошчы, захаванню паляўнічых угоддзяў, упарадкаванню, пераўтварэнню і стварэнню новых паляўнічых угоддзяў, зберажэнню паляўнічых аб’ектаў, падкормцы, акліматызацыі і рассяленню, селекцыі і паляпшэнню якасці, барацьбе са шкоднымі відамі, прафілактыцы і лячэнню. Праводзіцца ў нац. парках, запаведніках, заказніках і паляўнічых гаспадарках. Тэрмін увёў рус. вучоны П.А.Мантэйфель (1929).

т. 3, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЛЬНАМЕ́Р,

прылада для вызначэння адлегласцей да аб’ектаў без непасрэдных вымярэнняў на мясцовасці. Паводле прынцыпу дзеяння адрозніваюць Д. геам. (пасіўнага) і фіз. (актыўнага) тыпаў. Выкарыстоўваюцца ў інж. геадэзіі, тапаграфіі, ваен. справе, навігацыі, астраноміі, фатаграфіі і інш.

Прынцып дзеяння Д. геам. тыпу засн. на рашэнні роўнабаковага трохвугольніка па вядомай старане (базе) і процілеглым (паралактычным) вугле. Такія прылады бываюць монакулярныя (з адным акулярам; напр., у фотаграфічных апаратах) і бінакулярныя (гл. Стэрэаскапічны дальнамер), з пастаяннай базай і пастаянным вуглом (гл Аптычны дальнамер). Прынцып дзеяння Д. фіз. тыпу засн. на вымярэнні часавых або фазавых суадносін паміж пасланым і прынятым (адбітым ад аб’екта) сігналамі. У залежнасці ад выбранага дыяпазону і віду ваганняў адрозніваюць акустычныя Д. (гл. Гідралакацыя, Рэхалот), радыёдальнамеры і святлодальнамеры, у т.л. лазерныя.

П.С.Габец.

т. 6, с. 22

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАСЦЯРОГА АД ЗБРОІ МА́САВАГА ЗНІШЧЭННЯ,

комплекс мерапрыемстваў для зберажэння войск, насельніцтва і аб’ектаў нар. гаспадаркі ад уздзеяння ядз., хім., біял. (бактэрыяльнай) зброі.

Засцярога насельніцтва ўключае падрыхтоўку ахоўных збудаванняў, забеспячэнне людзей сродкамі індывід. засцярогі, вываз насельніцтва з буйных гарадоў у загарадную зону, папярэджанне аб пагрозе праціўніка выкарыстання зброі масавага знішчэння (ЗМЗ), біял. назіранне і кантроль заражэння навакольнага асяроддзя, запасаў харчавання і вады, сан.-гігіенічныя і проціэпідэмічныя мерапрыемствы і інш- У войсках арганізуецца і праводзяцца ва ўсіх відах баявой дзейнасці, уключае: радыяцыйную, хім. і біял. разведку, выяўленне падрыхтоўкі і папярэджанне войск аб пагрозе выкарыстання праціўнікам ЗМЗ, разгрупаванне войск (сіл) і перыядычную змену месцаў іх дыслакацыі; выкарыстанне ахоўных уласцівасцей мясцовасці, інж. абсталяванне месцаў дыслакацыі і інш. Гл. таксама Грамадзянская абарона, Засцярога супраць іанізавальнага выпрамянення.

П.В.Сычоў.

т. 7, с. 7

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

КУЛЬТУ́РА ТКА́НКІ, эксплантацыя,

метад захавання жыццядзейнасці органаў ці іх частак, участкаў тканак і асобных клетак па-за арганізмам. Заснавана на стварэнні асептычных умоў, якія забяспечваюць харчаванне, газаабмен і выдаленне прадуктаў абмену аб’ектаў, што культывуюцца пры т-ры, блізкай да аптымальнай для арганізма, кампаненты якога ўзяты для вырошчвання. Пры дапамозе К.т. вывучаюць гістагенез, міжтканкавыя і міжклетачныя ўзаемадзеянні, дыферэнцыроўку, рост і дзяленне клетак, асаблівасці абмену рэчываў у жывых клетках, патрэбнасць іх у харчаванні, адчувальнасць да розных рэчываў, у т.л. да лякарстваў. На клетках культур робяць аперацыі (выдаляюць ч. клеткі, уводзяць у яе мікробы і вірусы), рыхтуюць вакцыны (напр., супраць воспы, адру, поліяміэліту); культуры органаў выкарыстоўваюцца для вывучэння спосабаў захавання жыццядзейнасці ізаляваных органаў і тканак, якія прызначаны для трансплантацыі і інш.

т. 9, с. 12

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ХІ́МІЯ,

навука аб прынцыпах і метадах вывучэння саставу рэчываў. Уключае тэарэт. асновы хім. аналізу, метады вызначэння кампанентаў у рэчывах ці матэрыялах, сістэм. аналіз канкрэтных аб’ектаў. Тэарэт. асновы аналітычнай хіміі — метралогія хім. Аналізу (апрацоўка вынікаў); вучэнне аб адборы і падрыхтоўцы аналітычных проб, складанні схемы і выбары метадаў, прынцыпах і шляхах аўтаматызацыі аналізу. Аналітычная хімія звязана з дасягненнямі фізікі, матэматыкі, біялогіі, розных галін тэхнікі. Асаблівасць аналітычнай хіміі — вывучэнне індывід. спецыфічных уласцівасцяў і характарыстык аб’ектаў. У залежнасці ад мэты аналізу адрозніваюць якасны аналіз і колькасны аналіз; у залежнасці ад кампанентаў, якія неабходна выявіць — ізатопны аналіз, элементны аналіз, структурна-групавы (у т. л. функцыянальны аналіз), малекулярны і фазавы аналіз; у залежнасці ад прыроды рэчыва — аналіз арган. і неарган. рэчываў. Вызначэнне рэчыва ці кампанента праводзяць хімічнымі (гравіметрычны аналіз, цітрыметрычны аналіз), фізіка-хімічнымі (электрахім., фотаметрычны аналіз, кінетычныя метады аналізу), фізічнымі (спектральныя, ядзерна-фіз. і інш.) і біял. метадамі аналізу. Практычна ўсе метады аналітычнай хіміі заснаваны на залежнасці ўласцівасцяў аб’ектаў, якія можна мераць (маса, аб’ём, святлопаглынанне, эл. ток і інш.), ад іх саставу.

Заснавальнікам аналітычнай хіміі як навукі лічыцца Р.Бойль, які ўвёў паняцце «хімічны аналіз». Класічная аналітычная хімія (17—18 ст.) выкарыстоўвала пераважна гравіметрычны і цітрыметрычны метады аналізу. Да 1-й пал. 19 ст. адкрыты многія хім. элементы, выдзелены састаўныя часткі некаторых прыродных рэчываў, устаноўлены пастаянства саставу закон, кратных адносін закон, масы захавання закон. Распрацаваны сістэматычны аналіз (ням. хімікі Г.Розе, К.Фрэзеніус і рус. хімік М.А.Мяншуткін), створаны цітрыметрычны аналіз арган. злучэнняў (ням. хімік Ю.Лібіх). У канцы 19 ст. складалася тэорыя аналітычнай хіміі, заснаваная на вучэнні аб хім. раўнавазе ў растворах з удзелам іонаў (у асн. В.Оствальд). У 20 ст. з’явіліся метады мікрааналізу арган. злучэнняў (аўстр. хімік Ф.Прэгль), паляраграфіі (чэшскі хімік Я.Гейраўскі), рус. біяхімікам М.С.Цветам адкрыты метад храматаграфіі (1903) і створаны яго варыянты. Развіццё сучаснай аналітычнай хіміі звязана са з’яўленнем мноства фізіка-хім. і фіз. метадаў аналізу (мас-спектраметрычны, рэнтгенаўскі, ядзерна-фізічныя). Прапанаваны плазмавыя крыніцы току для атамна-эмісійнага аналізу, распрацаваны метады фотаметрычнага аналізу, атамна-адсарбцыйнай спектраскапіі. У сувязі з неабходнасцю аналізу ядз., паўправадніковых і інш. матэрыялаў высокай чысціні створаны радыеактывацыйны аналіз, хіміка-спектральны, іскравая мас-спектраметрыя, вольтамперметрыя — метады, што дазваляюць вызначыць дамешкі ў чыстых рэчывах з канцэнтрацыяй да 10​-7—10​-8%. Распрацаваны метады неперарыўнага і дыстанцыйнага аналізу. Перавага аддаецца метадам неразбуральнага кантролю, лакальнага аналізу (рэнтгенаспектральны мікрааналіз, мас-спектраметрыя другасных іонаў і інш.). Лакальным аналізам карыстаюцца пры аналізе паверхневых слаёў цвёрдых матэрыялаў ці ўключэнняў горных парод.

Сучасная аналітычная хімія карыстаецца аўтам. ці аўтаматызаванымі варыянтамі вызначэння рэчываў. Метады аналітычнай хіміі дазваляюць кантраляваць тэхнал. працэсы і якасць прадукцыі ў многіх галінах вытв-сці, праводзіць пошук і разведку карысных выкапняў. Аналітычная хімія садзейнічала развіццю ат. энергетыкі, электронікі, акіяналогіі, біялогіі, медыцыны, крыміналістыкі, археалогіі, касм. даследаванняў. На Беларусі сістэм. даследаванні па аналітычнай хіміі пачаліся ў 1935 у БДУ і вядуцца ў ін-тах фіз., хім. і геал. профілю АН, у ВНУ і ведамасных н.-д. установах. Распрацаваны шэраг храматаграфічных метадаў, выдзялення з сумесяў і вызначэння іонаў, комплексаў металаў, алкалоідаў і інш. рэчываў (пад кіраўніцтвам Р.Л.Старобінца); хім. метадаў вызначэння металаў (В.Р.Скараход); даследаваны ўплыў экстракцыйных працэсаў розных тыпаў на функцыянаванне вадкасных і плёначных іонаселектыўных электродаў на аснове вышэйшых чацвярцічных амоніевых соляў (Я.М.Рахманько) і сульфакіслот (У.У.Ягораў). Распрацаваны і ўкаранёны: аніён- і катыёнселектыўныя электроды; нітратамер і іонамер; методыкі вызначэння нітратаў, свінцу, кадмію, вісмуту, ртуці, цынку, алкалоідаў, алкілсульфатаў і інш., газахраматаграфічнага вызначэння фенолаў, пестыцыдаў у вадзе, прадуктах харчавання; экстракцыйна-спектральныя і храматаграфічныя метады аналізу с.-г. аб’ектаў; метады аналізу паўправадніковых матэрыялаў, сплаваў, плёнак, ферытаў.

Літ.:

Золотов Ю.А. Аналитическая химия: Проблемы и достижения. М., 1992.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЎТАМАТЫ́ЧНАГА КІРАВА́ННЯ ТЭО́РЫЯ,

раздзел кібернетыкі тэхнічнай, які вывучае прынцыпы пабудовы сістэм аўтам. кіравання (САК) і заканамернасці працэсаў, што ў іх працякаюць. Даследаванні праводзяцца на дынамічных (фіз. і матэм.) мадэлях рэальных сістэм з улікам умоў работы, прызначэння і канструкцыйных асаблівасцяў аб’ектаў і аўтам. прыстасаванняў.

Спачатку аўтаматычнага кіравання тэорыя развівалася як тэорыя аўтам. рэгулявання. На аснове вывучэння ўзаемадзеяння кіроўных прыстасаванняў і тэхн. аб’ектаў рознай прыроды выяўлена агульнасць працэсаў кіравання. Асн. задача аўтаматычнага кіравання тэорыі — распрацоўка метадаў аналізу і сінтэзу САК, з дапамогай якой руху (паводзінам) пэўнага аб’екта можна надаваць папярэдне зададзеныя ўласцівасці. Пры фіз. мадэляванні неабходна геам. (макеты збудаванняў, размеркаванне абсталявання і інш.) і фіз. (тоеснасць законаў руху, функцыянавання і інш.) падабенства. Пры матэм. мадэляванні абавязкова аднолькавасць матэм. фармалізму, вынікаў матэм. суадносін (разлікаў па формулах, алгарытмах і інш.) і рэальных працэсаў. Матэм. мадэль дынамікі аб’екта, у якой працэсы кіравання апісваюцца сістэмай звычайных дыферэнцыяльных ураўненняў або ўраўненняў у частковых вытворных, пры пераходзе ад ураўненняў да перадатачных функцый увасабляецца ў структурную схему з тыповых звенняў. Пры пабудове складаных сістэм кіравання акрамя тэарэт. метадаў выкарыстоўваецца мадэляванне на базе ЭВМ (у т. л. аналогавых), на якіх узнаўляюцца ўраўненні, што апісваюць сістэму кіравання ў цэлым, і па выніках разлікаў высвятляецца структура кіроўнага прыстасавання.

На Беларусі з канца 1950-х г. у АН, БДУ, Бел. політэхн. акадэміі, Бел. дзярж. ун-це інфарматыкі і радыёэлектронікі развіваецца тэорыя аўтам. рэгулявання электрапрыводаў, самапрыстасавальных аптымальных сістэм, сістэм з пераменнай структурай і інш.

Літ.:

Теория автоматического регулирования. Кн. 1—3. М., 1967—69;

Римский Г.В. Основы общей теории корневых траекторий систем автоматического управления. Мн., 1972;

Панасюк А.И, Панасюк В.И., Асимптотическая магистральная оптимизация управляемых систем. Мн., 1986.

Г.В.Рымскі.

т. 2, с. 115

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)