галіна цяжкай прамысловасці, якая спецыялізавана на атрыманні металаў з руды і інш. матэрыялаў, на змене хім. саставу, структуры і ўласцівасцей метал. сплаваў. Уключае чорную металургію і каляровую металургію. Вядзе здабычу і абагачэнне няруднай сыравіны для чорнай металургіі, вырабляе чорныя і другасныя каляровыя металы, трубы, метызы вытв. прызначэння, другасную апрацоўку чорных металаў, цвёрдыя сплавы тугаплаўкіх і гарачатрывалых металаў. На Беларусі найб. прадпрыемствы — Беларускі металургічны завод, Магілёўскі металургічны завод, Бел. навукова-вытв. аб’яднанне парашковай металургіі, Рэчыцкі метызны з-д. Сталь выплаўляюць таксама цэхі пераважна машынабуд. з-даў. У Мінску дзейнічае з-д па другаснай перапрацоўцы каляровых металаў. У 1997 М.п. уключала 19 прадпрыемстваў, на якіх занята 14 тыс.чал.; выраблена: чыгуннага ліцця 209 тыс.т, сталі 1220 тыс.т, гатовага пракату 1072 тыс.т, стальных труб 30,7 тыс.т (13 314 тыс.м), металакорду 40,4 тыс. т.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЕТАЛАФІ́ЗІКА,
раздзел фізікі цвёрдага цела, які вывучае структуру і ўласцівасці металаў і сплаваў; тэарэт. аснова металазнаўства. Вывучае механізм і кінетыку структурных і фазавых пераўтварэнняў пад уплывам мех., магн., тэрмічных, хім. і інш. уздзеянняў.
Асн. раздзелы М.: мікраскапічная тэорыя металаў (вывучае ўласцівасці на аснове асаблівасцей атамна-крышт. будовы); тэорыя дэфектаў і іх уплыў на ўласцівасці металаў (гл.Дэфекты металаў) тэорыя фаз (вывучае фазавую раўнавагу, пераўтварэнні, гетэрафазныя метал. матэрыялы — сплавы, цвёрдыя растворы; гл.Фаза ў тэрмадынаміцы). Задача М. — стварэнне матэрыялаў з зададзенымі фіз.-мех. ўласцівасцямі на аснове фундаментальных сувязей састаў — структура — уласцівасці метал. матэрыялаў.
На Беларусі даследаванні па праблемах М. праводзяцца з 1960-х г. у Фіз.-тэхн. ін-це, Ін-це фізікі цвёрдага цела і паўправаднікоў Нац.АН, БДУ, БПА.
Літ.:
Уманский Я.С., Скаков Ю.А. Физика металлов: Атом, строение металлов и сплавов. М., 1978;
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗВЫШПРАВАДНІКІ́,
рэчывы, у якіх пры ахаладжэнні ніжэй за крытычную тэмпературу электрычнае супраціўленне падае практычна да нуля — мае месца звышправоднасць.
Ад інш. электраправодных матэрыялаў З. адрозніваюцца поўнай адсутнасцю супраціўлення пастаяннаму эл. току, т.зв. захопам магн. патоку ўнуры кольца з З. і эфектам Майснера (магн. поле не пранікае ў тоўшчу З. пры напружанасці поля, меншай за крытычную, — сілавыя лініі поля агінаюць З.; на гэтым эфекце заснавана дзеянне звышправодных магн. экранаў). Да З. адносяцца многія металы (свінец Pb, алюміній Al, талій Ti, ніобій Nb і інш.), метал сплавы (напр., свінец—золата Pb—Au, ніобій—тытан—цырконій Nb—Ti—Zr), інтэрметалічныя злучэнні, карбіды, нітрыды, некаторыя паўправаднікі і палімеры. З. выкарыстоўваюцца для стварэння звышправодных магнітаў, балометраў, магутных электрагенератараў і рухавікоў, сілавых кабеляў і трансфарматараў вял. магутнасці для сістэм цэнтралізаванага размеркавання электраэнергіі, звышадчувальных дэтэктараў выпрамяненняў, у высакаскораснай лічбавай электроніцы і інш.Гл. таксама Высокатэмпературная звышправоднасць, Джозефсана эфект.
Літ.:
Физико-химия сверхпроводников. М., 1976;
Шмидт В.В. Введение в физику сверхпроводников. М., 1982.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МАГНІ́Т (грэч. magnētis ад Magnetis lithos літар. камень з Магнесіі — стараж. горада ў М.Азіі),
цела, якому ўласціва намагнічанасць — здольнасць ствараць вакол сябе магнітнае поле. Бываюць пастаянныя М. і электрамагніты (у т.л. звышправодныя магніты), намагнічанасць якіх ствараецца эл. токам.
Пастаянны М. бывае прыродны, з магн. жалезняку (магнетыту) і зроблены ў выглядзе падковы, паласы, стрыжня і да т.п. з папярэдне намагнічаных ферамагнетыкаў (пераважна магнітацвёрдых матэрыялаў). Гал. ўласцівасць М. — здольнасць прыцягваць жалеза, нікель, кобальт, некат. лантаноіды, іх сплавы і злучэнні, а таксама злучэнні хрому, марганцу і урану. Характарызуецца астаткавым намагнічваннем, каэрцытыўнай сілай, формай пятлі гістэрэзіса, макс. шчыльнасцю магн. энергіі. Свабодна падвешаны, адхіляецца ў магн. полі Зямлі адным бокам (полюсам) на Пн, другім — на Пд (гл.Магнітныя палюсы Зямлі). Шырока выкарыстоўваецца як аўтаномная крыніца пастаяннага магн. поля ў элементах, прыладах і апаратах электра- і радыётэхнікі, электронікі, аўтаматыкі.
У.М.Сацута.
Магнітнае поле пастаянных магнітаў: а — без магнітаправода; б — з магнітаправодам; 1 — магніт; 2 — магнітаправод; 3 — рабочы зазор; N і S — полюсы магніта.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫСОКАЧАСТО́ТНАЯ ЗВА́РКА,
зварка з награваннем металаў або пластмас токамі высокай частаты. Адрозніваюць высокачастотную зварку металаў ціскам і плаўленнем, бесперапынна паслядоўную (зварным швом) і адначасовую, з індукцыйным або кантактным (найб. пашырана) падводам току.
Пры зварцы швом створанае токам высокачастотнае магнітнае поле пранікае ў прамежак паміж краямі вырабаў, якія аплаўляюцца і сціскаюцца. Скорасць зваркі да 1 м/с і болей, рабочыя частоты 0,01, 0,44 і 1,76 МГц. Гэтым спосабам зварваюць сплавы жалеза, алюмінію, медзі і інш. (пры вытв-сці труб, кабеляў, бэлек, злучэнні лістоў, стужак і г.д.). Індукцыйная высокачастотная зварка заключаецца ў глыбінным індукцыйным нагрэве тарцоў вырабаў і іх сцісканні. Выкарыстоўваецца для злучэння малавугляродзістых і нізкалегіраваных сталей (пры стыкоўцы труб, дзе захоўваецца ўнутр. сячэнне). Пры высокачастотнай зварцы плаўленнем тарцы загатовак сумесна аплаўляюць спец. індуктарам. Такім спосабам робяць карпусы метал. вырабаў, злучаюць трубы з лістамі. Пры высокачастотнай зварцы пластмас іх награюць у пераменным эл. полі рабочага кандэнсатара (гл.Дыэлектрычны нагрэў), які служыць і зварачным прэсам. Так атрымліваюць вырабы з ліставых і плёначных тэрмапластыкаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
серабро́, ‑а, н.
1. Хімічны элемент, каштоўных высакародны бліскучы метал шаравата-белага колеру (выкарыстоўваецца для вырабу ювелірных рэчаў, пасуды, для чаканкі манет і пад.). Сплавы серабра.
2.зб. Вырабы з гэтага металу. [Клопікаў:] — Хапіліся сталовага серабра — а таго след прастыў.Лынькоў.
3. Дробная разменная манета са сплаву, у які ўваходзіць гэты метал або нікель. Кашалёк намацаў, серабром пабразгаў, Заходжу — паважаны купец.Панчанка.
4.перан. Што‑н. бліскучае, белае, якое колерам ці бляскам нагадвае гэты метал. Кранеш незнарок галінку — і пасыплецца проста за каўнер халоднае серабро.Гамолка.А сняжынкі падаюць чыстым серабром.Хведаровіч./ Пра сівізну. — Як гэта ён цябе?.. — не зразумеў Сымон і заскроб чорнымі пальцамі серабро сівізны.Нікановіч.// Белы з бляскам колер, афарбоўка чаго‑н. Месяц, яркі і круглы, абліў хвойнік расплаўленым серабром.Бядуля.
5.перан. Меладычнасць, звонкасць (голасу, гуку і пад.). На адгоне квартала — рассыпалася серабро сігнальнага званка.Гартны.
Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)
АНТЫФРЫКЦЫ́ЙНЫЯ МАТЭРЫЯ́ЛЫ (ад анты... + лац. frictio трэнне),
матэрыялы для дэталяў машын, якія працуюць ва ўмовах трэння слізгання (падшыпнікі, укладышы, утулкі і інш.). Антыфрыкцыйныя матэрыялы маюць высокую ўстойлівасць да зносу і карозіі, добрую прыработку, мінім. каэфіцыент трэння, вытрымліваюць мех. нагрузкі без змены ўласцівасцяў. Антыфрыкцыйныя ўласцівасці антыфрыкцыйных матэрыялаў залежаць ад структурнага стану паверхневых слаёў, мікратапаграфіі кантактуючых паверхняў і ўмоў фрыкцыйнага ўзаемадзеяння.
Найб. пашыраныя антыфрыкцыйныя матэрыялы: сплавы на аснове каляровых металаў (бабіты, бронза, латунь і інш.), чыгун, пластычныя масы, драўніна (у т. л. мадыфікаваная), кампазіты на аснове металаў, металакерамікі і палімераў. Асобная група антыфрыкцыйных матэрыялаў — самазмазвальныя матэрыялы; яны змяшчаюць кампаненты (напр., графіт), якія выконваюць пры трэнні ролю змазвальнага асяроддзя. Для надання матэрыялам антыфрыкцыйных уласцівасцяў іх паверхню мадыфікуюць хіміка-тэрмічнай, лазернай, іонна-прамянёвай апрацоўкай, нанясеннем зносаўстойлівых пакрыццяў, паверхнева-пластычным дэфармаваннем. Антыфрыкцыйныя матэрыялы выкарыстоўваюць ва ўмовах сухога трэння (у газах, паветры, вакууме); для работы з малавязкімі вадкасцямі без змазвальнага дзеяння (вада, арган. растваральнікі), з вадкімі ці пластычнымі змазкамі. На Беларусі вывучэннем і стварэннем антыфрыкцыйных матэрыялаў займаюцца ін-ты механікі металапалімерных сістэм і фізіка-тэхнічны АН Беларусі, Беларускае НВА парашковай металургіі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ПАЛА́ДЫЙ (лац. Palladium),
Pd, хімічны элемент VIII групы перыяд. сістэмы, ат. н. 46, ат. м. 106,42, адносіцца да плацінавых металаў. У прыродзе 6 стабільных ізатопаў з масавымі лікамі 102, 104—106, 108, 110. У зямной кары 10−6% па масе. Трапляецца ў самародным выглядзе, у выглядзе сплаваў (напр., паладзістая плаціна, якая мае 7—39% П.) і злучэнняў (напр., мінерал паладыт — аксід PdO). Адкрыты ў 1803 англічанінам У.Воластанам, названы ў гонар адкрыцця астэроіда Палада.
Серабрыста-белы мяккі метал, tпл 1554 °C, tкіп 2840 °C, шчыльн. 12 020 кг/м³. Паводле хім. уласцівасцей найб. актыўны плацінавы метал. Добра раствараецца ў царскай гарэлцы, а таксама ў гарачых канцэнтраваных азотнай і сернай к-тах. Найб. устойлівыя злучэнні Pd(II). У паветры акісляецца пры 600—800 °C (пакрываецца тонкай цьмянай плёнкай PdO). Пры награванні ўзаемадзейнічае з галагенамі, халькагенамі, мыш’яком і крэмніем. Абарачальна паглынае ў значнай колькасці вадарод (да 900 аб’ёмаў на 1 аб’ём П.). Сплавы П. з інш. металамі выкарыстоўваюць для вырабу мед. інструментаў, зубных пратэзаў, у вытв-сці ювелірных вырабаў, хім. апаратуры, як каталізатары шматлікіх хім. рэакцый (гідрыравання, дэгідрыравання і інш.).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВО́ЛАВА,
цына (лац. Stannum), Sn, хімічны элемент IV групы перыяд. сістэмы, ат. н. 50, ат. м. 118,710. Прыроднае волава складаецца з 10 стабільных ізатопаў: 112Sn, 114Sn – 120Sn, 122Sn, 124Sn; найб. пашыраныя — 120Sn (32,59%) і 118Sn (24,22%). У зямной кары змяшчаецца 8·10−3 % па масе. Трапляецца ў мінералах (гл.Алавяныя руды). Вядома з глыбокай старажытнасці (2-е тыс. да н.э.). Серабрыста-белы метал, мяккі і пластычны, tпл 231,91 °C, tкіп 2620 °C, паліморфны (гл.Полімарфізм); пры т-ры вышэй за 13,2 °C існуе белае волава (β-Sn, шчыльн. 7295 кг/м³), якое пры т-ры ніжэй за 13,12 °C пераходзіць у шэрае волава (α-Sn, шчыльн. 5846 кг/м³), пры гэтым метал ператвараецца ў шэры парашок. У звычайных умовах устойлівае да ўздзеяння вады і кіслароду, узаемадзейнічае з галагенамі, неарган. к-тамі, пры награванні — з дыаксідам вугляроду, неметаламі (серай, селенам, фосфарам і інш.), з растворамі шчолачаў, з металамі (кальцыем, магніем, тытанам і інш.) утварае інтэрметал. злучэнні (гл.Волава злучэнні). Атрымліваюць з алавяных руд і рэгенерацыяй адходаў. Выкарыстоўваюць як кампанент сплаваў бронза, латунь, бабіт (гл.Волава сплавы), для аховы металаў ад карозіі (луджэнне).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́ДКІЯ ПАЎПРАВАДНІКІ́,
вадкасці, якія маюць уласцівасці паўправаднікоў. Адкрыты А.Ф.Іофе і А.Р.Рэгелем у пач. 1950-х г. Па фармальных прыкметах вадкія паўправаднікі — расплавы з удзельнай электраправоднасцю пры нармальных умовах у інтэрвале (10−8 — 10−5) Ом−1·м−1; маюць электронную электраправоднасць.
Вадкія паўправаднікі ўтвараюцца пры плаўленні шэрагу крышталічных кавалентных паўправаднікоў (селен Se, злучэнні тыпу , , , і інш.), пры ўмове захавання кавалентных міжатамных сувязяў. У гэтым выпадку не мяняецца (ці нязначна памяншаецца) удзельная электраправоднасць і захоўваецца яе паўправадніковы характар тэмпературнай залежнасці ў адрозненне ад некаторых крышталічных паўправаднікоў (крэмній Si, германій Ge, і інш.), электраправоднасць якіх пры плаўленні рэзка павялічваецца да значэнняў, характэрных для металаў. Некаторыя вадкія паўправаднікі пры далейшым павелічэнні т-ры трацяць паўправадніковыя ўласцівасці і набываюць металічныя (напр., сплавы тэлур—селен Te—Se, багатыя Te).
Вадкія паўправаднікі выкарыстоўваюцца ў тэрмаэлементах, радыяцыйнаўстойлівых высокатэмпературных тэрмістарах і пераключальніках і інш.
Літ.:
Катлер М. Жидкие полупроводники: Пер. с англ. М., 1980;
Глазов В.М., Кольцов В.Б., Курбатов В.А. Экспериментальное исследование электрофизических свойств кремния вблизи фазового перехода кристалл — расплав в твердом и жидком состоянии. // Расплавы. М., 1987. Т. 1, вып. 1.