Іанізацыя 1/276, 393, 562, 563; 3/288; 5/24, 134, 378

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

іанізацыя

т. 7, с. 139

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

паверхневая іанізацыя

т. 11, с. 464

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЭРАНО́МІЯ

(ад аэра... + грэч. nomos закон),

раздзел фізікі атмасферы, які вывучае верхнія слаі атмасферы (вышэй за 30 км), дзе адбываюцца значная дысацыяцыя і іанізацыя атм. газаў. Узнікла ў 1950-я г. ў Англіі і Францыі (працы Д.Р.Бейтса і М.Нікале). Развіццё аэраноміі звязана з ракетнымі і спадарожнікавымі даследаваннямі фіз.-хім. працэсаў у верхняй атмасферы. Даследуе размеркаванне т-ры, шчыльнасці і нейтральных часцінак паветра на вышыні, канцэнтрацыю электронаў у іанасферы, серабрыстыя воблакі, свячэнне начнога неба, палярныя ззянні, радыяцыйныя паясы Зямлі і інш.

т. 2, с. 173

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗАРАЗРА́ДНЫЯ ПРЫЛА́ДЫ,

іонныя прылады, электронныя прылады, дзеянне якіх заснавана на праходжанні эл. току праз разрэджаны газ. Маюць шкляную або керамічную абалонку, запоўненую інертным газам, вадародам або парай ртуці пад ціскам. Момантам запальвання разраду кіруюць з дапамогай дадатковых электродаў (сетак або падпальных электродаў). Форма разраду (дугавы, тлеючы, іскравы ці каронны; гл. Электрычныя разрады ў газах, Іанізацыя) і яго ўласцівасці залежаць ад ціску газу, тыпу катода, канстр. асаблівасцей прылады, сілы току і інш. (гл. Газаразрадныя індыкатары, Газаразрадныя крыніцы святла, Газатрон і да т.п.).

Ф.А.Ткачэнка.

т. 4, с. 429

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АТМАСФЕ́РНАЯ ЭЛЕКТРЫ́ЧНАСЦЬ,

1) сукупнасць электрычных з’яў і працэсаў у атмасферы Зямлі (эл. поле атмасферы, іанізацыя паветра, эл. зарады воблакаў і ападкаў, эл. токі і разрады ў атмасферы і інш.). Каля зямной паверхні існуе стацыянарнае эл. поле; Зямля мае адмоўны зарад, атмасфера ў цэлым зараджана дадатна. У трапасферы ўсе воблакі і ападкі, пыл і інш. завіслыя часцінкі электрычна зараджаны. Атмасферная электрычнасць — прычына ўтварэння маланак, агнёў святога Эльма (свячэнне на вастрыях званіц, мачтаў і інш.), з ёй звязаны палярныя ззянні.

2) Раздзел фізікі атмасферы, які вывучае гэтыя з’явы.

т. 2, с. 76

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАРЭ́З (Varèse) Эдгар

(22.12.1883, Парыж — 7.11.1965),

амерыканскі кампазітар, дырыжор; адзін з першых прадстаўнікоў муз. авангардызму. Вучыўся ў Парыжскай кансерваторыі (1906—07). З 1908 дырыжыраваў харамі і аркестрамі ў Берліне, Празе; з 1915 у Нью-Йорку. Лічыў музыку «арганізаваным шумам», імкнуўся павялічыць акустычныя магчымасці інструментаў. Эксперыментаваў у сферы канкрэтнай музыкі і электроннай музыкі. Сярод твораў: п’есы «Гіперырызма» для духавых і ўдарных (1923), «Інтэгралы» для камернага арк. і ўдарных (1925), «Іанізацыя» для 13 ударнікаў (1931), «Экватарыял» для аргана, ударных, труб, трамбонаў, 2 хваляў Мартэно і баса (1934), «Пустыня» для электронных духавых і ўдарных (1954). Аўтар прац па электроннай музыцы, муз.-крытычных артыкулаў.

т. 4, с. 20

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗАРАЗРА́ДНЫЯ КРЫНІ́ЦЫ СВЯТЛА́,

газаразрадныя прылады, у якіх электрычная энергія пераўтвараецца ў аптычнае выпрамяненне пры праходжанні току праз рэчыва ў газападобным стане. Маюць шкляную, кварцавую або метал. (з празрыстым акном) абалонку з герметычна ўпаянымі электродамі, запоўненую газам (звычайна інертным) або парай металаў (напр., ртуці) пад ціскам. Бываюць газаразрадныя крыніцы святла з адкрытымі электродамі, якія працуюць у паветры або струмені газу (напр., вугальная дуга).

У газаразрадных крыніцах святла адбываецца тлеючы або дугавы разрад (гл. Электрычныя разрады ў газах, Іанізацыя). Імпульсныя лямпы з ксенонавым запаўненнем (трубчастыя, прамыя, спіральныя і U-падобныя) выкарыстоўваюцца для напампоўкі лазераў, імпульснага асвятлення пры фатаграфаванні, у страбаскапіі, аптычнай лакацыі і інш. Дугавыя ксенонавыя лямпы трубчастай або сферычнай формы маюць высокую светлавую аддачу і спектр выпрамянення, блізкі да спектра сонечнага святла ў бачнай вобласці. Выкарыстоўваюцца для асвятлення вял. плошчаў, стадыёнаў і інш., а таксама ў святлокапіравальных і фоталітаграфічных апаратах, праекцыйнай апаратуры. Дугавыя натрыевыя лямпы ў спалучэнні з ртутнымі выкарыстоўваюцца для асвятлення дарог, тунэляў, аэрадромаў і інш. У якасці эталонных крыніц святла ў атамна-абсарбцыйных і атамна-флюарэсцэнтных спектрафатометрах, інтэрферометрах, рэфрактометрах і інш. прыладах выкарыстоўваюць спектральныя лямпы.

Ф.А.Ткачэнка.

т. 4, с. 429

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВАЯ ДЫНА́МІКА,

раздзел гідрааэрамеханікі, які вывучае рух газападобных і вадкіх асяроддзяў з улікам сціскальнасці і іх узаемадзеянне з цвёрдымі целамі. Сучасная газавая дынаміка вывучае таксама цячэнне газаў пры высокіх т-рах, што суправаджаецца хім. (дысацыяцыя, гарэнне і інш.) і фіз. (іанізацыя, выпрамяненне і інш.) працэсамі. Да газавай дынаміцы адносяцца таксама радыяцыйная газавая дынаміка, дынаміка плазмы, дынаміка выбуху і дэтанацыі, дынамічная метэаралогія і інш. Газавая дынаміка цесна звязана з тэрмадынамікай.

Газавая дынаміка займаецца вывучэннем сіл, якія дзейнічаюць на самалёт, снарад, ракету, на лапаткі турбін, вызначэннем найбольш прыдатных (абцякальных) формаў гэтых цел, разлікам соплаў, дыфузараў, эжэктараў, эксперым. даследаваннямі ў аэрадынамічных трубах, мадэляваннем на ЭВМ і інш. Тэарэт. разлікі пераносяцца на натуру метадамі падобнасці тэорыі. Найб. важная характарыстыка газавых патокаў — лік Маха: М = ν/a (ν — скорасць газу, а — скорасць гуку ў газе). Пры скарасцях газаў, меншых за скорасць гуку ў газе (М<1), сціскальнасць газу надае патоку толькі якасныя змены, а пры скарасцях газу, большых за скорасць гуку ў газе (М>1), рух цела суправаджаецца ўзнікненнем ударнай хвалі і рэзкім ростам супраціўлення руху. Вялікі ўклад у развіццё газавай дынамікі зрабілі вучоныя: расійскі С.А.Чаплыгін, савецкія С.А.Хрысціяновіч, А.А.Дарадніцын, Л.І.Сядоў, ням. Л.Прандтль, Т.Маер, англ. Дж.І.Тэйлар і інш.

На Беларусі даследаванні па газавай дынаміцы пачаліся ў 1960-я г. ў АН Беларусі і БДУ. Вынікі даследаванняў па газавай дынаміцы выкарыстоўваюцца ў фізіцы плазмы, балістыцы, ракета- і турбамашынабудаванні і інш.

Літ.:

Абрамович Г.Н. Прикладная газовая динамика. Ч. 1—2. 5 изд. М., 1991;

Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. 2 изд. М., 1966.

Л.Я.Мінько.

т. 4, с. 424

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЕ ДЗЕ́ЯННЕ ІАНІЗАВА́ЛЬНЫХ ВЫПРАМЯНЕ́ННЯЎ,

біяхімічныя, фізіял., генет. і інш. змяненні, што ўзнікаюць у жывых клетках і арганізмах пад уздзеяннем іанізавальных выпрамяненняў. Дзеянне на арганізм залежыць ад віду і дозы выпрамянення, умоў апрамянення і размеркавання паглынутай дозы ў арганізме, фактару часу апрамянення, выбіральнага пашкоджання крытычных органаў, а таксама ад функцыян. стану арганізма перад апрамяненнем. Асн. вынікам узаемадзеяння іанізавальных выпрамяненняў са структурнымі элементамі клетак жывых арганізмаў з’яўляецца іанізацыя, якая прыводзіць да індуцыравання розных хім. і біял. рэакцый ва ўсіх тканкавых сістэмах арганізма. Радыебіял. працэсы, што ідуць на ўзроўні клеткі, ідэнтычныя для чалавека, жывёл і раслін. Адрозненне паміж імі выяўляецца на ўзроўні арганізма. Вылучаюць 2 асн. класы радыебіял. эфектаў: саматычныя (да іх належаць рэакцыі элементаў біясістэмы, што ідуць на працягу ўсяго антагенезу) і генет. (змены, якія рэалізуюцца ў наступных пакаленнях). Да саматычных належаць: радыяцыйная стымуляцыя, радыяцыйныя парушэнні, прамянёвая хвароба, паскарэнне тэмпаў старэння, скарачэнне працягласці жыцця, гібель арганізма. Генетычныя (ці мутагенныя) эфекты іанізавальных выпрамяненняў найбольш небяспечныя. Уздзейнічаючы на ДНК саматычных і генератыўных клетак, іанізавальныя выпрамяненні могуць выклікаць мутацыі, злаякасныя перараджэнні клетак. Ступень біялагічнага дзеяння іанізавальных выпрамяненняў залежыць і ад радыеадчувальнасці: маладыя арганізмы больш адчувальныя да выпрамяненняў, паўлятальная доза (D50) для большасці млекакормячых не перавышае 4—5, для некаторых раслін дасягае 30—40 і больш за сотню грэй. У арганізмах вылучаюцца крытычныя органы, якія першыя рэагуюць на іанізавальныя выпрамяненні: у чалавека і жывёл гэта касцявы мозг, эпітэлій страўнікава-кішачнага тракту, эндатэлій сасудаў, хрусталік вока, палавыя залозы; у вышэйшых раслін — утваральныя тканкі (мерыстэмы). Асобнае месца пры ўздзеянні на біясістэмы належыць малым дозам іанізавальных выпрамяненняў, якія пасля аварыі на Чарнобыльскай АЭС ператварыліся ў паўсядзённы фактар асяроддзя на забруджаных радыенуклідамі тэрыторыях Беларусі, Украіны, Расіі. Рэгулёўнае біялагічнае дзеянне іанізавальных выпрамяненняў шырока выкарыстоўваецца ў медыцыне (рэнтгенадыягностыка, радыетэрапія, выкарыстанне ізатопных індыкатараў і інш.), сельскай гаспадарцы (радыяцыйны мутагенез і інш.).

Літ.:

Кудряшов Ю.Б., Беренфильд Б.С. Основы радиационной биофизики. М., 1982;

Кузин А.М. Структурнометаболическая теория в радиобиологии. М., 1986;

Ярмоненко С.П. Радиобиология человека и животных. 3 изд. М., 1988;

Гродзинский Д.М. Радиобиология растений. Киев, 1989;

Гудков И.Н. Основы общей и сельскохозяйственной радиобиологии. Киев, 1991.

А.П.Амвросьеў.

т. 3, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)