Рымана геаметрыя

т. 13, с. 508

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Рымана інтэграл

т. 13, с. 508

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Кашы́Ры́мана ўраўне́нні

т. 8, с. 202

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРМАНІ́ЧНАЯ ФУ́НКЦЫЯ,

функцыя некалькіх рэчаісных пераменных, якая неперарыўная ў некаторай вобласці разам з частковымі вытворнымі 1-га і 2-га парадку і задавальняе ў гэтай вобласці Лапласа ўраўненню. Гарманічная функцыя 2 пераменных звязаны з аналітычнымі функцыямі камплекснай пераменнай, рэчаісная і ўяўная часткі якіх — спалучаныя гарманічныя функцыі (звязаныя Кашы—Рымана ўраўненнем). Гарманічныя функцыі выкарыстоўваюцца пры рашэнні многіх задач эл.-магнетызму гідра- і аэрадынамікі, тэорыі фільтрацыі і цеплаправоднасці і інш.

т. 5, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ХАЎ Фёдар Дзмітрыевіч

(19.2.1906, г. Чэркеск, Расія — 30.3.1980),

бел. матэматык. Акад. АН Беларусі (1966), д-р фіз.-матэм. н., праф. (1943). Скончыў Казанскі ун-т (1930). З 1953 у Растоўскім ун-це. У 1961—76 у БДУ. Навук. працы па краявых задачах аналітычных функцый і сінгулярных інтэгральных ураўненнях. Даў закончанае рашэнне асн. краявой задачы аналітычных функцый, т.зв. задачы Рымана.

Тв.:

Краевые задачи. [3 изд.) М., 1977;

Уравнения типа свертки. М., 1978 (разам з Ю.І.Чэрскім).

Літ.:

Ф.Д.Гахов // Успехи математических наук. 1976. Т. 31, вып. 4.

т. 5, с. 95

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ФУ́НКЦЫЯ,

функцыя, значэнне якой у кожным пункце яе вобласці вызначэння роўнае суме ступеннага шэрага, які збягаецца ў некаторым наваколлі гэтага пункта. Да аналітычнай функцыі адносяцца: рацыянальная функцыя, паказнікавая функцыя, лагарыфмічная функцыя, трыганаметрычныя функцыі, адваротныя трыганаметрычныя функцыі, іх разнастайныя кампазіцыі, а таксама функцыі, адваротныя да гэтых кампазіцый. Існуюць аналітычныя функцыі аднаго або некалькіх рэчаісных ці камплексных пераменных. Функцыя f(z) аднаго комплекснага пераменнага z=x+iy наз. аналітычнай функцыяй у пункце z0, калі ў некаторым наваколлі h гэтага пункта існуе канечная вытворная f′(z) = lim h 0 f(z + h) f(z) h (дыферэнцыравальнасць функцыі), што мае месца ў тым і толькі ў тым выпадку, калі выконваецца ўмова Кашы—Рымана dt dz̅ = 0 , дзе = x + y. Асновы тэорыі аналітычнай функцыі былі закладзены А.Кашы, Б.Рыманам і К.Веерштрасам, С.В.Кавалеўскай і інш. На Беларусі даследаванні па тэорыі аналітычнай фунцыі пачаліся ў 1930-я г. ў БДУ (М.В.Ламбін, М.Л.Лукомская), з 1960-х г. праводзяцца ў АН, БДУ і інш. ВНУ рэспублікі (Ф.Дз.Гахаў, Э.І.Звяровіч і інш.). Аналітычныя функцыі маюць шматлікія дастасаванні ў матэм. аналізе (вылічэнне вызначаных інтэгралаў), у геаметрыі (канформныя адлюстраванні), у тэорыі пругкасці, гідрадынаміцы, электрадынаміцы і інш. навуках. Гл. таксама Кашы інтэграл, Кашы тэарэма.

Літ.:

Маркушевич А.И. Теория аналитических функций. Т. 1—2. М., 1967—68;

Шабат Б.В. Введение в комплексный анализ. Ч. 1—2. 3 изд. М., 1985;

Гахов Ф.Д. Краевые задачи. 3 изд. М., 1977.

Э.І.Звяровіч.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)