БЛЯСК,

1) характарыстыка ўласцівасці паверхні, абумоўленая люстраным адбіццём святла. Колькасна вызначаецца суадносінамі паміж інтэнсіўнасцямі святла пры люстраным і дыфузным адбіцці.

2) Бляск нябеснага свяціла — характарыстыка асветленасці, якая ствараецца свяцілам на плоскасці, перпендыкулярнай прамяням, што на яе падаюць (уплыў атмасферы не ўлічваецца). Вымяраецца ў зорных велічынях.

т. 3, с. 199

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЎГАВЕ́ЧНАСЦЬ,

уласцівасць тэхн. вырабу (прыстасавання, збудавання) захоўваць працаздольнасць да надыходу гранічнага стану, пры якім далейшая эксплуатацыя яго павінна быць спынена з-за неадхільнага парушэння патрабаванняў тэхнікі бяспекі або выхаду параметраў за ўстаноўленыя межы. Адзін з асн. паказчыкаў надзейнасці вырабаў. Колькасна ацэньваецца рэсурсам — працягласцю функцыянавання вырабу (або аб’ёмам выкананай ім работы) ад пачатку эксплуатацыі да надыходу гранічнага стану. Для многіх вырабаў (электроннай тэхнікі і інш.) крытэрыем гранічнага стану з’яўляецца прыпыненне дзейнасці (гл. Безадказнасць). Д. вызначаецца разлікамі, спец. даследаваннямі з выкарыстаннем тэхнічнай дыягностыкі. На Беларусі праблемы Д. вывучаюцца ў Ін-це надзейнасці машын Нац. АН і інш.

т. 6, с. 64

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІХРАВЫ́ РУХ,

рух вадкасці (або газу), пры якім яе часціцы (элементарныя аб’ёмы) рухаюцца паступальна і аварочваюцца вакол некаторай імгненнай восі. Выяўляецца пры цячэнні рэальных (вязкіх) вадкасцей і газаў у трубаправодах або пры вонкавым абцяканні цел.

Віхравы рух абумоўлены тым, што розныя слаі вадкасці (газу) рухаюцца з рознымі скарасцямі (з-за наліпання скорасць часціц каля сценак роўная нулю і павялічваецца пры аддаленні ад іх). Колькасна віхравы рух апісваюць вектарам вуглавой скорасці вярчэння часціц, які наз. віхрам асяроддзя ў дадзеным пункце. Часціцы пры віхравым руху ўтвараюць віхравыя трубкі або асобныя слаі. Віхравая трубка можа мець пачатак і канец толькі на межах вадкасці (газу) або быць замкнёнай, напр. У вадзе на паверхні і дне ракі, у паветры на паверхні зямлі (смерч) і інш.

т. 4, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЕ́НТНАСЦЬ

(ад лац. valentia сіла),

здольнасць атама хім. элемента ўтвараць пэўную колькасць хімічных сувязяў з інш. атамамі. Паняцце «валентнасць» увёў англ. хімік Э.Франкленд (1853). Велічыня валентнасці атама хім. элемента вызначаецца колькасцю атамаў вадароду (прынята лічыць аднавалентным), якія ён далучае пры ўтварэнні гідрыдаў (злучэнні з вадародам). Напр., атам хлору далучае 1 атам вадароду (хлорысты вадарод HCl), атам кіслароду — 2 атамы (вада H2O), таму валентнасць хлору і кіслароду ў гэтых злучэннях адпаведна 1 і 2. Паняцце «валентнасць» атрымала развіццё ў квантава-хім. тэорыі хім. сувязі. Паводле гэтай тэорыі велічыня валентнеасці атама (спін-валентнасць) вызначаецца колькасцю электронных пар, якія фарміруюцца пры ўтварэнні хім. сувязяў паміж дадзеным і інш. атамамі за кошт абагульнення іх электронаў з няспаранымі спінамі. Электроны атама, якія могуць удзельнічаць у фарміраванні агульных электронных пар, наз. валентнымі (электроны вонкавых электронных слаёў). У атамах элементаў з недабудаваным перадапошнім слоем (напр., у атамаў жалеза Fe, марганцу Mn, вальфраму W) валентнымі могуць быць і некаторыя электроны гэтага слоя. Многія элементы маюць пераменную валентнасць (напр., у серавадародзе H2S, аксідах SO2 і SO3 валентнасць серы адпаведна 2, 4, 6).

Валентнасць вызначаецца толькі колькасцю кавалентных сувязяў. Для злучэнняў з іоннай сувяззю выкарыстоўваецца паняцце акіслення ступень, якая колькасна роўная валентнасці, але дадаткова характарызуецца дадатным ці адмоўным знакам. У комплексных злучэннях і іонных крышталях каардынацыйны лік атамаў (іонаў) перавышае велічыню спін-валентнасці, таму карыстаюцца паняццем каардынацыйнай валентнасці, якая колькасна роўная суме спін-валентнасці і колькасці атамаў (іонаў), дадаткова звязаных з валентнанасычаным атамам. Напр., у комплексным злучэнні гексафтораалюмінат (III) натрыю Na3[AlF6] спін-валентнасць атама алюмінію 3, ступень акіслення +3, але пры ўтварэнні злучэння з AlF3 і NaF атам валентнанасычанага Al дадаткова хімічна звязваецца з 3 іонамі F​-, таму каардынацыйная валентнасць алюмінію ў гэтым злучэнні 6. Гл. таксама Комплексныя злучэнні, Малекула, Крышталі.

Літ.:

Чаркин О.П. Проблемы теории валентности, химической связи, молекулярной структуры. М., 1987.

В.В.Свірыдаў.

т. 3, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАСЛЕ́ДАВАННЕ АПЕРА́ЦЫЙ,

навуковы метад выпрацоўкі колькасна абгрунтаваных рэкамендацый для прыняцця рашэнняў у арганізац. кіраванні. Тэрмін узнік у ЗША у гады 2-й сусв. вайны (1939—45), калі пры ваен. штабах ствараліся групы, якія аналізавалі эфектыўнасць розных відаў зброі і ваенна-тактычных рашэнняў. З дапамогай матэм. аналізу і простых правіл вырашаюцца складаныя матэм. задачы. Д.а. мае значэнне ў механіцы, аўтаматыцы, электратэхніцы. Найб. ўплыў на развіццё гэтага метаду зрабілі А.Эрланг, Дж. фон Нейман, Л.В.Кантаровіч, Дж.Б.Данцыг, Р.Белман. Метады Д.а. маюць шырокае кола задач арганізац. кіравання, якія ўзнікаюць у прам-сці, на транспарце, у сельскай гаспадарцы, іх выкарыстоўваюць страхавыя і рэкламныя кампаніі, агенцтвы па турызме, прадпрыемствы камунальнага абслугоўвання і інш. У даследаванні кожнай аперацыйнай задачы павінна быць 6 этапаў: пастаноўка задачы; пабудова матэм. мадэлі з’явы або аперацыі; аналіз мадэлі і атрыманне рашэння; праверка адэкватнасці мадэлі з’яве і аналіз якасці рашэння; карэкціроўка мадэлі і рашэння; рэалізацыя вынікаў рашэння. Работы на ўсіх пералічаных этапах маюць сэнс, калі яны завяршаюцца ўкараненнем вынікаў даследаванняў у практыку кіравання.

т. 6, с. 60

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПЕРА́ЦЫЙ ДАСЛЕ́ДАВАННЕ,

метад распрацоўкі колькасна абгрунтаваных рэкамендацый па прыняцці аптымальных рашэнняў па арганізацыі і кіраванні дзеяннямі (аперацыямі). Навукова аформілася для рашэння тэхн., тэхніка-эканам. задач і задач кіравання ў канцы 1940-х г.

У кожнай задачы аперацый даследавання фармальна апісана мноства магчымых рашэнняў і вызначанай мэтавай функцыі, значэнні якой характарызуюць меру дасягнення мэты пры кожным магчымым рашэнні. Задачы аперацый даследавання бываюць статычныя і дынамічныя, дэтэрмінаваныя і стахастычныя. У статычных задачах мэтавая функцыя яўна не залежыць ад часу, у дынамічных — час мае істотнае значэнне, у дэтэрмінаваных — выбар канкрэтнага рашэння прыводзіць да пэўнага значэння мэтавай функцыі, у стахастычных — гал. ролю адыгрывае фактар выпадковасці. Пры рашэнні статычных дэтэрмінаваных задач карыстаюцца метадамі лінейнага і нелінейнага праграмавання, дынамічных дэтэрмінаваных — дынамічнага праграмавання, стахастычных — тэорыі імавернасцяў, матэм. статыстыкі, тэорыі масавага абслугоўвання, стат. тэорыі прыняцця рашэнняў. Задачы, у якіх сутыкаюцца інтарэсы двух і больш бакоў, рашаюцца метадамі тэорыі гульняў. Калі дакладнае рашэнне задачы немагчыма, карыстаюцца метадам стат. выпрабаванняў (гл. Монтэ-Карла метад). Для рашэння складаных задач распрацаваны пакеты праграм для ЭВМ. Гл. таксама Аптымізацыі задачы і метады.

М.А.Лепяшынскі.

т. 1, с. 424

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСО́РБЦЫЯ

(ад лац. ad... на, да + sorbere паглынаць),

паглынанне рэчыва з газавага або вадкага асяроддзя (адсарбату) паверхняй, мікрасітавінамі цвёрдага цела (адсарбенту) ці вадкасці. Адсорбцыя — прыватны выпадак сорбцыі, якая ўключае абсорбцыю. У аснове адсорбцыі ляжаць асаблівыя ўласцівасці рэчыва ў паверхневым слоі, колькасна яна характарызуецца паверхневым нацяжэннем. Падзяляецца на фізічную абсорбцыю і хемасорбцыю, без рэзкага размежавання паміж імі; часта спалучаецца ў адзіным працэсе.

Фізічная адсорбцыя — вынік міжмалекулярных узаемадзеянняў (дысперсных сіл і сіл электрастатычнага характару); менш трывалая, абарачальная (адначасова адбываецца дэсорбцыя) працякае адвольна з памяншэннем паверхневай свабоднай энергіі і выдзяленнем цяпла. Скорасць фіз. адсорбцыі залежыць ад хім. прыроды і геам. структуры адсарбенту, канцэнтрацыі і прыроды рэчываў, што паглынаюцца, т-ры, дыфузіі і міграцыі малекул адсарбату; калі яна роўная скорасці дэсорбцыі, настае адсарбцыйная раўнавага. Пры хемасорбцыі малекулы адсарбату і адсарбенту ўтвараюць хім. злучэнні.

Велічыню адсорбцыі адносяць да адзінкі паверхні ці масы адсарбенту; яна павялічваецца пры павышэнні канцэнтрацыі адсарбату і памяншаецца пры павышэнні т-ры. Пры цвёрдых адсарбентах велічыню адсорбцыі вызначаюць па колькасці паглынутага рэчыва ці па змене канцэнтрацыі адсарбату; пры вадкіх — па змене паверхневага нацяжэння. Адсорбцыя адыгрывае важную ролю ў цеплаабмене, стабілізацыі калоідных сістэм (гл. Дысперсныя сістэмы, Каагуляцыя, Міцэлы), у гетэрагенных рэакцыях (гл. Тапамічныя рэакцыі, Каталіз). Выкарыстоўваецца ў храматаграфіі, прамысл. тэхналогіях, мае месца ў многіх біял. і глебавых працэсах. Адсорбцыя ў біялагічных сістэмах — першая стадыя паглынання рэчываў з навакольнага асяроддзя субмікраскапічнымі калоіднымі структурамі, арганеламі і клеткамі. У рознай ступені ўласціва працэсам функцыянавання біял. мембран, узаемадзеяння ферментаў з субстратам, антыцелаў з антыгенамі (на пач. стадыі), нейтралізацыі таксічных агентаў, усмоктвання пажыўных рэчываў і інш., дзе істотнае значэнне маюць паверхневыя ўласцівасці асобных кампанентаў біял. сістэм. У мед. практыцы індыферэнтнымі, нерастваральнымі адсарбентамі карыстаюцца для выдалення з арганізма соляў цяжкіх металаў, алкалоідаў, харч. інтаксікантаў, пры метэарызме, вонкава — у выглядзе прысыпак, мазяў і пастаў — пры запаленні скуры і слізістых абалонак для падсушвання. На з’явах адсорбцыі грунтуецца шэраг метадаў біяхім. даследаванняў.

Літ.:

Адамсон А. Физическая химия поверхностей: Пер. с англ. М., 1979;

Кельцев Н.В. Основы адсорбционной техники. 2 изд. М., 1984.

т. 1, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЛІЧЭ́ННЕ,

сістэма правіл аперыравання са знакамі пэўнага віду, якая дазваляе даць дакладнае апісанне некаторага класа задач і алгарытмы іх рашэння; спосаб утварэння якой-н. сукупнасці (мноства) элементаў на аснове правіл атрымання новых элементаў з зададзеных зыходных. Мае фундаментальны характар, як і паняцце алгарытму. Узнікла і развівалася ў рамках матэматыкі (гл. Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Дыферэнцыяльнае злічэнне, Інтэгральнае злічэнне). Пазней метады пабудовы З. пачалі выкарыстоўвацца ў логіцы (гл. Алгебра логікі, Матэматычная лінгвістыка). Агульная тэорыя З. выкарыстоўваецца ў алгарытмаў тэорыі.

У матэматычнай логіцы любое З. адназначна задаецца зыходнымі элементамі (алфавітам З.), правіламі ўтварэння формул дадзенага З. (слоў ці выразаў), сукупнасцю аксіём і правіл пераўтварэння (вывядзення) яго фразеалогіі. Прыпісванне элементам З. пэўных значэнняў (гл. Семантыка лагічная) пераўтварае З. ў фармалізаваную мову. Напр., у З. выказванняў шляхам пэўнай канечнай працэдуры (доказу; улічваецца толькі праўдзівасць ці непраўдзівасць выказвання) атрымліваюць выказванні-тэарэмы (гл. Логіка выказванняў). У выніку атрымліваюць лагічную сістэму, якая фармалізуе разважанне, заснаванае на структуры складаных выказванняў у адрозненне ад унутранай структуры элементарных выказванняў. Пры З. прэдыкатаў атрымліваюць сцвярджэнні (формулы, тэарэмы) з улікам суб’ектна-прэдыкатыўнай структуры выказванняў (напр., «элемент X мае ўласцівасць P), што дае магчымасць выяўляць сувязь аб’ектаў з іх уласцівасцямі і суадносіны паміж імі, колькасна характарызаваць сувязь рэчаў, уласцівасцей і адносін з дапамогай лагічных эквівалентаў выразаў «усе», «некаторыя», «кожны» і інш. (гл. Квантары). Такое З. адпавядае логіцы прэдыкатаў, калі яно мае ўласцівасці несупярэчлівасці (кожная тэарэма агульназначная) і паўнаты (кожная агульназначная формула даказальная). З. прэдыкатаў уключае З. выказванняў і разглядаецца звычайна як яго пашырэнне шляхам фармалізацыі вывадаў, заснаваных на ўнутранай структуры выказванняў. Тэорыю З. прэдыкатаў распрацаваў ням. логік, матэматык і філосаф Г.Фрэге, чым істотна ўзбагаціў сілагістыку Арыстоцеля і традыц. сілагістыку. Абагульненне З. выказванняў — З. класаў, дзе дадаткова разглядаецца суб’ектна-прэдыкатная структура выказванняў і пры гэтым з кожным прэдыкатам (уласцівасцю) звязваецца ўся сукупнасць элементаў (клас) з разгляданай вобласці, якія маюць гэтую ўласцівасць (гл. Логіка класаў). З. класаў часам разглядаюць як фармалізаваную тэорыю мностваў, выкарыстоўваюць як дапаможны этап пры пераходзе ад З. выказванняў да З. прэдыкатаў і будуюць на базе З. выказванняў з дапамогай адпаведнай інтэрпрэтацыі яго формул.

Літ.:

Гильберт Д., Аккерман В. Основы теоретической логики: Пер. с нем. М., 1947;

Методологические проблемы развития и применения математики. М., 1985;

Жуков Н.И. Философские основания математики. 2 изд. Мн., 1990.

С.Ф.Дубянецкі.

т. 7, с. 76

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)