Дзель 4/217

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

ДЗЯЛЕ́ННЕ,

арыфметычнае дзеянне, адваротнае множанню. Падзяліць лік a (дзеліва) на b (дзельнік адрозны ад нуля) — значыць знайсці такі лік x (дзель), што здабытак bx = a (або xb = a). Для абазначэння Дз. выкарыстоўваюць знакі двукроп’я (a:b), гарыз. (ab) або нахільнай (a/b) рысы.

Для рацыянальных лікаў (цэлых, дробных і нуля) Дз. адназначнае і заўсёды магчымае (акрамя Дз. на нуль, што немагчыма). У межах цэлых лікаў — адназначнае, але не заўсёды магчымае, напр., 6 дзеліцца на 2 і 3, але не дзеліцца на 5. Абагульненнем звычайнага Дз. з’яўляецца Дз. з астачай. Падзяліць цэлыя неадмоўныя лікі a на b — знайсці такія цэлыя неадмоўныя лікі x і y, якія задавальнялі б патрабаванні a = bx + y, y < b, дзе x — няпоўная дзель (пры y ≠ 0) ці дзель (пры y = 0); y — астача. Гл. таксама Падзельнасць.

т. 6, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СІНЫ двух лікаў,

дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў x = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)