Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
КАТА́НГЕНС [новалац. cotangens, ад co(mplementi) tangens тангенс дапаўнення],
адна з трыганаметрычных функцый; абазначаецца ctg. К. вострага вугла прамавугольнага трохвугольніка — дзель катэта, прылеглага да дадзенага вугла, на катэт, які ляжыць насупраць гэтага вугла.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДЗЯЛЕ́ННЕ,
арыфметычнае дзеянне, адваротнае множанню. Падзяліць лік a (дзеліва) на b (дзельнік адрозны ад нуля) — значыць знайсці такі лік x (дзель), што здабытак bx = a (або xb = a). Для абазначэння Дз. выкарыстоўваюць знакі двукроп’я (a:b), гарыз. () або нахільнай (a/b) рысы.
Для рацыянальных лікаў (цэлых, дробных і нуля) Дз. адназначнае і заўсёды магчымае (акрамя Дз. на нуль, што немагчыма). У межах цэлых лікаў — адназначнае, але не заўсёды магчымае, напр., 6 дзеліцца на 2 і 3, але не дзеліцца на 5. Абагульненнем звычайнага Дз. з’яўляецца Дз. з астачай. Падзяліць цэлыя неадмоўныя лікі a на b — знайсці такія цэлыя неадмоўныя лікі x і y, якія задавальнялі б патрабаванні a = bx + y, y < b, дзе x — няпоўная дзель (пры y ≠ 0) ці дзель (пры y = 0); y — астача. Гл. таксама Падзельнасць.
дзяленне адрэзка на 2 часткі, пры якім меншая частка адносіцца да большай, як большая да ўсяго адрэзка. Тэрмін «З.с.» ўвёў Леанарда да Вінчы (канец 15 — пач. 16 ст.). Алг. вызначэнне З.с. адрэзка даўжынёй a зводзіцца да рашэння ўраўн.a/x=x/ax(ax) (гл.Гарманічная прапорцыя). Дзельx/a можна набліжана выявіць дробамі 2/3, 3/5, 5/8, 8/13, 13/21, дзе 2, 3, 5, 8, 13, 21, ... — лікі Фібаначы. З.с. сустракаецца ў «Асновах» Эўкліда (3 ст. да н.э.). Прынцыпы З.с. выкарыстоўваюцца ў архітэктуры (асабліва антычнай эпохі Адраджэння) і выяўл. мастацтве.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕПЕРАРЫ́ЎНАЯ ФУ́НКЦЫЯ,
функцыя, якая набывае бясконца малыя прырашчэнні пры бясконца малых зменах аргумента. Маюць важныя ўласцівасці, выкарыстоўваюцца ў матэматыцы і яе дастасаваннях.
Дыферэнцавальная функцыя заўсёды неперарыўная (існуюць недыферэнцавальныя Н.ф.); інтэграл ад Н.ф. на адрэзку заўсёды існуе; для ўсякай функцыі, неперарыўнай на адрэзку, можна знайсці мнагасклад, значэнні якога адрозніваюцца на гэтым адрэзку ад значэнняў функцыі менш, чым на адвольна малы папярэдне зададзены лік (тэарэма Веерштраса). На такіх мнагаскладах грунтуецца набліжэнне функцый (гл.Набліжэнне і інтэрпаляцыя функцый). Сума, рознасць і здабытак Н.ф. даюць у выніку таксама Н.ф. Дзель дзвюх такіх функцый будзе таксама Н.ф., акрамя пунктаў, дзе назоўнік дробу роўны нулю. Паняццю Н.ф. проціпастаўляецца паняцце разрыўнай функцыі. Адна і тая ж функцыя можа быць неперарыўнай пры адных значэннях аргумента і разрыўнай пры другіх. Напр., дробавая частка ліку x разрыўная пры цэлых значэннях аргумента і неперарыўная пры астатніх.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНО́СІНЫдвух лікаў,
дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў x = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.