ГАРМО́НЫ (ад грэч. hormaō прыводжу ў рух),

біялагічна актыўныя рэчывы, якія выдзяляюцца залозамі ўнутр. сакрэцыі ці спецыялізаванымі клеткамі. Спецыфічна ўздзейнічаюць на інш. органы і тканкі, забяспечваючы інтэграцыю біяхім. працэсаў у жывых арганізмах. Пад кантролем гармонаў адбываюцца ўсе этапы развіцця арганізма з моманту яго зараджэння, асн. працэсы яго жыццядзейнасці (ад транспартавання іонаў да счытвання генома, гл. Гарманальная рэгуляцыя). Эфекты дзеяння гармонаў выяўляюцца на ўзроўні цэласнага арганізма (напр., у зменах паводзін), асобных яго сістэм (нерв., стрававальнай, рэтыкулаэндатэліяльнай і інш.), органаў, клетак і іх арганел, ферментных сістэм і асобных ферментаў, на малекулярна-атамным і іонным узроўнях. Парушэнні сакрэцыі гармонаў (іх недахоп або лішак) вядуць да ўзнікнення эндакрынных хвароб, парушэнняў абмену рэчываў, утварэння злаякасных пухлін, развіцця аўтаімунных і інш. хвароб.

Вядома шмат гармонаў і гармонападобных рэчываў, у т. л. больш за 40 у млекакормячых. Іх класіфікуюць па месцы ўтварэння (гармоны гіпофіза, гармоны шчытападобнай залозы, гармоны наднырачнікаў і інш.) і па хім. прыродзе — стэроідныя (андрагены, эстрагены, кортыкастэроіды), пептыдна-бялковыя (інсулін, самататропны, лютэнізавальны, фалікуластымулявальны гармон і інш.), вытворныя амінакіслот (адрэналін, норадрэналін, тыраксін, трыёдтыранін і інш.), простагландзіны. Для гармонаў характэрны надзвычай высокая біял. актыўнасць (дзейнічаюць у мікраскапічных дозах), спецыфічнае і дыстатнае (аддаленне ад месца сінтэзу) дзеянне. Шэрагу гармонаў і гармонападобных рэчываў (т.зв. гарманоідаў, парагармонаў ці тканкавых гармонаў) уласціва мясц. дзеянне, якое рэалізуецца шляхам мясц. дыфузій (паракрынныя гармоны) і праз уплыў на клеткі, якія іх сінтэзуюць (аўтакрынныя гармоны); нейрамедыятары, сінтэзаваныя нерв. клеткамі, вылучаюцца непасрэдна нерв. канцамі. Гармоны адрозніваюцца па працягласці дзеяння: у нейрамедыятараў вымяраецца мілісекундамі, у пептыдных гармонаў — секундамі, у бялковых — мінутамі, у стэроідных — гадзінамі, у тыэроідных гармонаў — суткамі. Залежна ад хім. будовы малекул гармоны ўзаемадзейнічаюць з рэцэптарамі ў розных частках клеткі: стэроідныя ў цытаплазме, тырэоідныя ў ядры, бялкова-пептыдныя на вонкавым баку мембраны. Узаемадзеянне гармонаў з рэцэптарамі прыводзіць да актывацыі апошніх і фарміравання адпаведнай метабалічнай рэакцыі.

У раслін рэчывы, падобныя да жывёльных гармонаў, наз. фітагармонамі.

В.К.Кухта.

т. 5, с. 65

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГРА́ФІЯ (ад металы + ...графія),

раздзел металазнаўства, які вывучае структуру металаў і сплаваў з дапамогай аптычнай і электроннай мікраскапіі, дыфракцыі рэнтгенаўскіх прамянёў. Даследуе заканамернасці ўтварэння структуры, яе змен пад уплывам знешніх уздзеянняў.

Вывучэнне паверхні металу няўзброеным вокам, праз лупу або мікраскоп з павелічэннем да 10 разоў дазваляе выявіць макраструктуру (крышталічную, хім. або мех. неаднастайнасць у выглядзе буйных зярнят, дэфектаў і дамешкаў). Даследаванне паліраванай і траўленай паверхні пры дапамозе мікраскопа з павелічэннем у 50—1500 разоў дазваляе выявіць мікраструктуру (памеры і формы зярнят, размеркаванне структурных фаз, уключэнняў і дэфармацый). Металаграфскае траўленне (уздзеянне кіслотным і інш. актыўным рэагентам) дае магчымасць устанавіць унутр, структурную будову сплаву. З дапамогай трансмісійнага мікраскопа вядуць электронна-мікраскапічнае даследаванне (выяўляюць фрагменты структуры памерам у некалькі нанаметраў, назіраюць скопішчы дыслакацый і скажэнняў крышт. рашоткі); электроннага сканіруючага мікраскопа — атрымліваюць відарысы дэфектаў структуры з вял. глыбінёй рэзкасці пры павелічэнні да 20 тыс. разоў (вывучаюць паверхні разбурэння, аб’ёмныя ўключэнні і інш.); рэнтгенаўскага дыфрактометра — атрымліваюць інфармацыю аб крышталеграфічных параметрах асобных фаз, унутр. напружаннях, раствораных у металах атамах. Адначасова з металаграфскімі даследаваннямі будовы металаў і сплаваў вывучаюць умовы, што выклікаюць змену іх унутр. структуры (уздзеянне награвання і ахаладжэння, пластычнай дэфармацыі, адпачыну, рэкрышталізацыі, спякання, насычэння хім. элементамі і інш.), а таксама даследуюць фіз. (мех.) уласцівасці. Даныя выкарыстоўваюць для вывучэння працэсаў атрымання метал. матэрыялаў з зададзенымі ўласцівасцямі. М. выкарыстоўваецца як адзін з метадаў кантролю якасці пры ліцці, тэрмаапрацоўцы, апрацоўцы ціскам, зварцы і інш. Першыя даследаванні структуры з выкарыстаннем аптычнага мікраскопа праведзены ў 1931 П.А.Аносавым.

На Беларусі М. выкарыстоўваюць пры распрацоўцы новых матэрыялаў у Фізіка-тэхн. ін-це Нац. АН Беларусі, Бел. навукова-вытв. канцэрне парашковай металургіі, БПА, у металургічнай і металаапрацоўчай прам-сці.

Літ.:

Смолмен Р., Ашби К. Современная металлография: Пер. с англ. М., 1970;

Лившиц Б.Г. Металлография. 3 изд. М., 1990;

Приборы и методы физического металловедения: Пер. с англ. Вып. 1—2. М., 1973—74.

Г.М.Гайдалёнак.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТА́ЛЫ (лац. metallum ад грэч. metallon шахта, руднік),

простыя рэчывы, якія ў звычайных умовах маюць характэрныя, метал., уласцівасці — высокую эл. праводнасць і цеплаправоднасць, адмоўны тэмпературны каэф. эл. праводнасці, здольнасць добра адбіваць эл.-магн. хвалі (бляск, непразрыстасць), пластычнасць. У цвёрдым стане М. — крышт. рэчывы з металічнай сувяззю. У тэхніцы да М. адносяць таксама сплавы на іх аснове (гл. Металазнаўства).

Да М. адносяць 86 са 109 элементаў перыяд. сістэмы. Паводле становішча ў перыяд. сістэме адрозніваюць М. галоўных (a) і пабочных (b) падгруп, ці непераходныя і пераходныя. У непераходных М. адбываецца запаўненне знешніх s- і p-электронных абалонак (напр., шчолачныя металы), у пераходных — запаўненне размешчаных бліжэй да ядра d- і f-абалонак (гл. Пераходныя элементы). Паводле тэхн. класіфікацыі адрозніваюць чорныя (жалеза і яго сплавы) і каляровыя М., якія ўмоўна падзяляюць на некалькі груп: лёгкія металы, цяжкія (свінец, цынк і інш.), тугаплаўкія металы, высакародныя металы, рэдказямельныя М. (гл. Рэдказямельныя элементы), радыеактыўныя М. (гл. Радыеактыўныя элементы) і інш. Хім. ўласцівасці М. абумоўлены электроннай будовай атамаў, якія лёгка аддаюць знешнія (валентныя) электроны, таму ў хім. рэакцыях яны звычайна з’яўляюцца аднаўляльнікамі. М. ўтвараюць асн. аксіды і гідраксіды, многія замяшчаюць вадарод у к-тах. У прыродзе ў свабодным стане трапляюцца рэдка, звычайна ў выглядзе злучэнняў (аксідаў, сульфідаў і інш.). Здабычай М. з руд займаецца металургія. Ступень выкарыстання М. абумоўлена практычнай каштоўнасцю яго ўласцівасцей, а таксама прыроднымі запасамі (распаўсюджанасцю ў зямной кары) і цяжкасцямі атрымання. Здольнасць М. да ўзаемнага растварэння з утварэннем пры крышталізацыі цвёрдых раствораў і інтэрметалідаў (гл. Металіды) дазваляе атрымліваць мноства сплаваў з разнастайным спалучэннем уласцівасцей. У тэхніцы М. выкарыстоўваюць выключна ў выглядзе сплаваў як найважнейшыя канстр. матэрыялы.

Літ.:

Венецкий С.И. Рассказы о металлах. 4 изд. М., 1985;

Гелин Ф.Д., Чаус А.С. Металлические материалы. Мн., 1999.

Г.Г.Паніч.

т. 10, с. 307

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІНЕРАЛО́ГІЯ (ад позналац. minera руда + ...логія),

навука аб прыродных хім. злучэннях — мінералах. Вывучае састаў, уласцівасці, марфалогію, структуру, працэсы ўтварэння і змянення мінералаў, заканамернасці сумеснага знаходжання ў прыродзе, а таксама ўмовы і метады штучнага атрымання з мэтай іх практычнага выкарыстання. Уваходзіць у комплекс геал. навук і цесна звязана з петраграфіяй, крышталяграфіяй, геахіміяй, вучэннем аб карысных выкапнях і інш. Аб’ект даследавання ў М. — асобныя крышталі, іх агрэгаты, генетычныя сукупнасці і інш. У 2-й пал. 20 ст. сфарміраваліся раздзелы М. касмічнай і М. мантыі. Вял. значэнне мае эксперыментальная М., якая займаецца мадэліраваннем фіз.-хім. працэсаў утварэння мінералаў, іх сінтэзам.

М. — найстаражытнейшая з навук геал. цыкла. Тэрмін «М.» ўведзены ў 1636 італьян. натуралістам Б.Цэзіем. М. развівалася паралельна з горнай справай і металургіяй. Элементы мінер. ведаў трапляюцца ў натурфілосафаў (з сярэдзіны 4 ст. да н.э.). Арыстоцель вылучаў у мінер. свеце 2 класы: камяні і руды. Класіфікацыяй мінералаў займаліся Тэафраст, Пліній Старэйшы, у 10—12 ст. Біруні, Ібн Сіна, Альберг Вялікі. Накапленне ведаў аб мінералах (у 17 ст. ў працах дацкіх вучоных Э.Барталіна, Н.Стэна, англ. Р.Бойля, Р.Гука, галандскага К.Гюйгенса, у 18—19 ст.франц. Ж.Б.Рамэ дэ Ліля, Р.Ж.Гаюі, англ. У.Воластана, ням. А.Г.Вернера, рус. М.В.Ламаносава, В.М.Севергіна і інш.) прывяло да дыферэнцыяцыі М. і вылучэння з яе крышталяграфіі (18 ст.), петраграфіі (19 ст.), вучэння аб карысных выкапнях, геахіміі і металагеніі (канец 19 — пач. 20 ст.), вучэння аб каўстабіялітах (20 ст.), крышталяхіміі (сярэдзіна 20 ст.). Вял. ўклад у развіццё М. зрабілі рус. вучоныя М.І.Какшараў, П.У.Ерамееў, А.П.Карпінскі, Я.С.Фёдараў, сав. вучоныя А.Г.Бяцехцін, А.К.Болдыраў, У.І.Вярнадскі, А.М.Заварыцкі, У.М.Лодачнікаў, С.С.Смірноў, А.Я.Ферсман і інш.

На Беларусі мінералагічныя даследаванні праводзяцца паралельна з літалагічнымі, петраграфічнымі, з вывучэннем карысных выкапняў і стратыграфіі. Імі займаюцца ў ВА «Белгеалогія», Бел. н.-д. геолагаразведачным ін-це, Ін-це геал. навук Нац. АН Беларусі і інш.

Я.І.Аношка.

т. 10, с. 381

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАЛЕАГЕАГРА́ФІЯ (ад палеа... + геаграфія),

навука пра фізіка-геагр. ўмовы мінулых геал. эпох; частка гіст. геалогіі і адначасова фіз. геаграфіі. Асн. пытанні П. — размеркаванне сушы і мора ў стараж. эпохі, вобласці зносу і намнажэння асадкаў, рэльеф сушы і дна мораў, фіз.-хім. і дынамічныя асаблівасці марскіх басейнаў, клімат і інш. Метады П. грунтуюцца на вывучэнні горных парод (пашырэнне і магутнасці, структурныя і тэкстурныя асаблівасці, мінер. і хім. састаў, характар і ўмовы залягання, ізатопы кіслароду і вугляроду і інш.), а таксама арган. рэштак у іх, якія адлюстроўваюць умовы асяроддзя пры асадканамнажэнні. На аснове палеагеагр. даследаванняў складаюцца палеагеаграфічныя карты. П. цесна звязана з вучэннем аб фацыях, літалогіяй, палеанталогіяй, стратыграфіяй, геахіміяй, кліматалогіяй, геатэктонікай, геафізікай і інш. Падзяляецца на агульную П., якая вывучае асн. заканамернасці змены геагр. абалонкі Зямлі, і рэгіянальную П., якая даследуе фіз.-геагр. ўмовы пэўных тэрыторый у асобныя геал. перыяды.

П. ўзнікла ў сярэдзіне 19 ст. пасля распрацоўкі адноснай геахраналагічнай шкалы на аснове звестак біястратыграфіі, з’яўлення вучэння аб фацыях (швейц. геолаг А.Грэслі) і абгрунтавання метаду актуалізму (англ. геолаг Ч Лаель). У самаст. галіну вылучылася ў пач. 20 ст., калі палеагеагр. рэканструкцыі сталі перадумовай пошуку карысных выкапняў. Уклад у развіццё П. зрабілі рас. і сав. вучоныя М.І.Андрусаў, А.П.Карпінскі, А.Дз.Архангельскі, Дз.В.Наліўкін, М.М.Страхаў, Л.Б.Рухін, К.К.Маркаў і інш.

На Беларусі палеагеагр. даследаванні пачаліся ў 1-й пал. 20 ст. (П.А.Туткоўскі, Ф.В.Лунгерсгаўзен, М.Ф.Бліадухо). У 1950—60-я г. складзены палеагеагр. карты верхняга пратэразою, палеазою, мезазою, кайназою (В.С.Акімец, Л.М.Вазнячук, В.К.Галубцоў, С.С.Маныкін, А.С.Махнач, І.В.Міцяніна, М.М.Цапенка і інш.), вывучаны этапы развіцця расліннасці ў дэвоне-карбоне (Г.І.Кеда), антрапагене (Н.А.Махнач), даследаваны стараж. палеарэкі (Г.І.Гарэцкі). Даследаванні па праблемах карысных выкапняў абагульнены ў працах Л.Ф.Ажгірэвіч, Я.І.Аношкі, У.Я.Бардона. М.В.Вераценнікава, Э.А.Высоцкага, Г.У.Зінавенкі, С.А.Кручака, М.М.Лявых, Э.А.Ляўкова, К.М.Манкевіча, В.А.Масквіча, А.А.Махнача, А.В.Мацвеева, І.І.Ур’ева, У.І.Шкурагава і інш).

Літ.:

Рухин Л.Б. Основы общей палеогеографии. 2 изд. Л. 1962;

Геология СССР. Т. 3. Белорусская ССР. Геологическое описание. М., 1971.

С.А.Кручак.

т. 11, с. 542

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІТАМІ́НЫ (ад лац. vita жыццё),

група нізкамалекулярных арган. злучэнняў рознай хім. прыроды, неабходных для нармальнай жыццядзейнасці арганізма. Выконваюць у арганізме найважнейшыя біяхім. і фізіял. функцыі абмену рэчываў; уваходзяць у састаў субклетачных структур і падтрымліваюць іх нармальную будову і функцыянаванне. Сінтэзуюцца пераважна раслінамі (гл. Вітамінаносныя расліны), грыбамі і бактэрыямі. Чалавек і жывёлы атрымліваюць вітаміны ў асн. з расліннай ежай або з прадуктамі жывёльнага паходжання. У жвачных жывёл вітаміны групы B утвараюцца мікрафлорай кішэчніка. Некаторыя вітаміны ўтвараюцца ў арганізмах чалавека і жывёл самастойна (напр., PP), але ў недастатковай колькасці, або з іх папярэднікаў — т.зв. правітамінаў. Праз сценкі страўнікава-кішачнага тракту чалавека і жывёл вітаміны паступаюць у кроў, разносяцца па ўсім арганізме і ўтвараюць шматлікія вытворныя (напр., эфірныя, амідныя, нуклеатыдныя), якія звычайна спалучаюцца са спецыфічнымі бялкамі і ўтвараюць многія ферменты (больш за 200). Многія праяўляюць сваё спецыфічнае біял. ўздзеянне пасля ператварэння ў метабалічна актыўныя формы або ўваходзяць у састаў каферментаў і адпаведных ферментаў. Нястача вітамінаў (гл. Вітамінная недастатковасць) прыгнечвае асобныя рэакцыі абмену рэчываў, аслабляе некаторыя фізіял. функцыі. Калі вітамінаў намнога больш, чым патрэбна арганізму, узнікаюць гіпервітамінозы, калі менш або яны адсутнічаюць — гіпа- і авітамінозы. Выкарыстанне арганізмам вітамінаў памяншаецца пры наяўнасці ў ежы і кармах антывітамінаў — антаганістаў, якія перашкаджаюць вітамінам праяўляць іх біял. актыўнасць. Тэрмін «вітаміны» прапанаваў польскі біяхімік К.Функ (1912).

Вядома больш за 20 розных вітамінаў, якія маюць назвы, што характарызуюць іх хім. састаў ці фізіял. дзейнасць, таксама літарныя і лічбава-літарныя абазначэнні (напр., рэцінол — A1, тыямін — B1, рыбафлавін — B2, пантатэнавая кіслата — B3, пірыдаксін — B6, цыянкабаламін — B12, аротавая кіслата — B13, пангамавая кіслата — B15, фоліевая кіслата — Bc, аскарбінавая кіслата — C, эргакальцыферол — D2, халекальцыферол — D3, такаферолы — E, філахінон — K1, фарнахінон — K2, вікасол — K3, біяцін — H, біяфлаваноіды — P, нікацінавая кіслата, або нікацінамід — PP, ліпоевая кіслата, мезаіназіт). Часам яны маюць групавыя назвы, а асобныя прадстаўнікі гэтых груп (напр., A1 і A2, D2 і D3 і г.д.) называюцца вітамерамі. Па растваральнай здольнасці вітаміны падзяляюцца на тлушча- і водарастваральныя. Да тлушчарастваральных належаць вітаміны групы A, D, E, K, Q, якія звычайна дэпануюцца ў тканках. Большасць водарастваральных вітамінаў у выглядзе фосфарных эфіраў выконваюць ролю каферментаў або ўваходзяць у састаў больш складаных каферментаў. Да гэтай групы належаць вітаміны групы B — B1, B2, B3, B5, B6, B12, H, PP, U; ліпоевая, фоліевая і аскарбінавая к-ты. Вельмі багатыя вітамінамі дрожджы, лісцевая агародніна, ягады.

Вітаміны атрымліваюць хім. і мікрабіял. сінтэзам, таксама з прыродных крыніц (гл. Вітамінная прамысловасць). Выкарыстоўваюць у медыцыне і ветэрынарыі для прафілактыкі і лячэння гіпа- і авітамінозаў, інш. хвароб, карэкцыі абменных працэсаў у арганізме (вітамінатэрапія), вітамінізацыі прадуктаў харчавання і кармоў (гл. Вітамінныя кармы) і інш. Вітаміны вывучае Вітаміналогія.

Літ.:

Березовский В.М. Химия витаминов. 2 изд. М., 1973;

Витамины. М., 1974;

Овчаров К.Е. Витамины растений. М., 1964;

Экспериментальная витаминология: (справ. руководство). Мн.. 1979.

В.К.Кухта.

т. 4, с. 200

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АМРЫ́ТСАР,

горад на ПнЗ Індыі, штат Пенджаб, 709 тыс. ж. (1991). Трансп. вузел. Прамысл. і гандл. цэнтр. Тэкст., маш.-буд., хім. прам-сць. Вядомы рамёствамі: вытв-сць тканін, дываноў, вырабы з металу, косці, скуры.

Засн. ў канцы 16 ст. гуру Рам Дасам. Гал. рэліг. і культ. цэнтр сікхаў з ун-там Гуру Нанака. Тут знаходзіцца іх свяцілішча — «Залаты храм», дзе захоўваецца свяшчэнная кніга Адыгрантх. У 1-й пал. 19 ст. Амрытсар уваходзіў у склад дзяржавы Ранджыт Сінгха. У 1849 у выніку 2-й англа-сікхскай вайны захоплены англ. Ост-Індскай кампаніяй. У 1918—22 Амрытсар — адзін з цэнтраў нац.-вызв. барацьбы. 13.4.1919 англ. войскі расстралялі ў Амрытсары мітынг пратэсту супраць палітыкі калан. ўрада; у выніку т.зв. Амрытсарскай разні забіта і паранена больш за 1 тыс. чал. У 1947 Амрытсар значна разбураны ў час індуска-мусульманска-сікхскіх пагромаў.

т. 1, с. 324

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́НДХРА-ПРА́ДЭШ,

штат на ПдУ Індыі. Пл. 276,8 тыс. км², нас. 66,5 млн. чал. (1991), пераважна андхра (тэлугу); гарадскога 20%. Адм. цэнтр — Хайдарабад, буйныя гарады: Вішакхапатнам, Віджаявада. Займае прыбярэжную нізіну ўздоўж Бенгальскага заліва, частку пласкагор’я Дэкан і гор Усх. Гаты (выш. да 1680 м). Клімат вільготны, трапічны, мусонны на ўзбярэжжы (1500 мм ападкаў за год), ва ўнутр. раёнах з засушлівай зімой (ападкаў 500—850 мм за год). Адзін з асн. с.-г. штатаў Індыі. Гал. с.-г. культуры: рыс, тытунь, клешчавіна, кенаф, цукр. трыснёг, таксама вырошчваюць проса, арахіс, бавоўнік і інш. У жывёлагадоўлі пераважае авечкагадоўля. Традыцыйныя галіны прам-сці — тытунёвая, цукровая. Развіты горназдабыўная (каменны вугаль, слюды, хрызалітавы азбест, барыты, вапнякі, буд. матэрыялы, жал. і марганцавая руды, храміты, свінец), металург., хім., маш.-буд. прам-сць. Транспарт чыг., марскі (гал. порт Вішакхапатнам), аўтамабільны.

З.М.Шуканава.

т. 1, с. 362

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУ́ФАЛА (Buffalo),

горад на ПнУ ЗША, штат Нью-Йорк. Засн. ў канцы 18 — пач. 19 ст. 323,4 тыс. ж., з прыгарадамі 1,19 млн. ж. (1992). Размешчаны каля ўсх. берага воз. Эры і вытоку р. Ніягара, на суднаходным канале, які злучае Вял. азёры праз р. Гудзон з Атлантычным ак. Порт на воз. Эры, даступны для марскіх суднаў. Вузел чыгунак і аўтамаб. дарог. Міжнар. аэрапорт. Праз Буфала адбываецца значная ч. гандлю ЗША з Канадай. Буйны прамысл. і гандл.-фін. цэнтр краіны. Чорная металургія, металаапрацоўка. Разнастайнае машынабудаванне (вытв-сць цеплавога і інш. прамысл. абсталявання, станкоў, аўтамабільных дэталяў і вузлоў, авіяц. тэхнікі, электронных кампанентаў і сродкаў сувязі і інш.). Хім., цэлюлозна-папяровая, харч. (пераважна мукамольная і мясакансервавая) прам-сць. 2 ун-ты. Цэнтр ядзерных даследаванняў. Музей навукі. Маст. галерэя Олбрайт-Нокс. Каля Буфала — ГЭС на р. Ніягара.

т. 3, с. 362

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАКУУММЕ́ТР,

прылада для вымярэння ціску газаў, ніжэйшага за атмасферны. Падзяляюцца на абсалютныя (напр., вадкасныя, дэфармацыйныя, кампрэсійныя) і адносныя (радыеметрычныя, цеплавыя, іанізацыйныя). Кожны тып вакуумметра разлічаны на вымярэнні ў пэўных межах ціску. Выкарыстоўваюцца ў энергетыцы, электроніцы, вакуумнай металургіі, хім. і харч. прам-сці.

Абсалютныя вакуумметры вымяраюць ціск непасрэдна; іх паказанні не залежаць ад роду газу. У вадкасных вакуумметрах вымераны ціск (рознасць ціскаў) ураўнаважваецца ціскам слупа вадкасці. Дзеянне кампрэсійных вакуумметраў заснавана на Бойля—Марыёта законе У рэфармацыйных вакуумметрах ціск вымяраецца па дэфармацыі адчувальнага элемента (сільфон, мембрана і інш.). Адносныя вакуумметры вымяраюць фіз. велічыні, залежныя ад ціску газу; градуіруюцца па абсалютных узорных вакуумметрах; іх паказанні залежаць ад роду газу. Прынцып дзеяння радыеметрычных вакуумметрах заснаваны на радыеметрычным эфекце, цеплавых — на цеплаабмене напаленай металічнай ніці, іанізацыйных — на вымярэнні сілы іоннага току; крыніца іанізацыі — паток электронаў ад напаленага катода, α- або β-часціцы.

М.І.Дудо.

т. 3, с. 465

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)