ЗАТУХА́ННЕ ВАГА́ННЯЎ,

памяншэнне амплітуды ваганняў з цягам часу, абумоўленае стратамі энергіі вагальнай сістэмай. Ператварэнне энергіі вагальнай сістэмы ў цеплавую (унутраную) энергію адбываецца ў выніку прысутнасці трэння ў мех. сістэмах (напр., маятнік) і наяўнасці амічнага супраціўлення ў эл. сістэмах (напр., вагальны контур). З.в. можа адбывацца таксама за кошт страт энергіі, звязаных з выпрамяненнем гукавых і эл.-магн. хваль.

Найбольш вывучана З.в. у лінейных сістэмах, дзе памяншэнне энергіі прапарцыянальнае квадрату скорасці руху (мех. сістэма) або квадрату сілы току (эл. сістэма). У гэтым выпадку З.в. мае экспаненцыяльны характар: амплітуда ваганняў памяншаецца паводле залежнасці A(t) = A0e−γt , дзе A0 — першапачатковая амплітуда, γ — каэфіцыент затухання, t — час. З.в. парушае іх перыядычнасць, пры вялікіх каэфіцыентах затухання амплітуда хутка памяншаецца да нуля і ваганні спыняюцца (гл. Аперыядычны працэс). Пры малых затуханнях умоўна карыстаюцца паняццем перыяду як прамежку часу паміж двума паслядоўнымі максімумамі вагальнай фіз. велічыні (сілы эл. току, напружання або размаху ваганняў маятніка і інш.). Гл. таксама Дэкрэмент затухання.

А.І.Болсун.

Затуханне ваганняў. A0 — першапачатковая амплітуда ваганняў; T — перыяд ваганняў.

т. 7, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ МЕХА́НІКА,

раздзел механікі, у якім рух сістэм матэрыяльных пунктаў (цел) даследуецца пераважна метадамі матэм. аналізу. Вывучае складаныя мех. сістэмы (машыны, механізмы, сістэмы часціц і інш.), рух якіх абмежаваны пэўнымі ўмовамі (гл. Сувязі механічныя).

Галаномная сістэма (мех. сувязі залежаць толькі ад каардынат і часу) у патэнцыяльным полі характарызуецца функцыяй Лагранжа L=T-U, дзе T — кінетычная і U — патэнцыяльная энергія сістэмы. Калі вядома канкрэтная залежнасць L=L(q,,t), дзе q — абагульненыя каардынаты, — абагульненыя скорасці, t — час, то пры дапамозе прынцыпу найменшага дзеяння можна знайсці дыферэнцыяльныя ўраўненні руху мех. сістэмы. Іх інтэграванне пры зададзеных пачатковых умовах дазваляе вызначыць закон руху сістэмы, г.зн. залежнасці qi=qi(t), дзе i=1, 2, ..., S, S — лік ступеняў свабоды.

Асн. Палажэнні аналітычнай механікі распрацаваў Ж.Лагранж (1788), значны ўклад зрабілі У.Гамільтан, М.В.Астраградскі, П.Л.Чабышоў, А.М.Ляпуноў, М.М.Багалюбаў, А.Ю.Ішлінскі і інш. Метады аналітычнай механікі далі магчымасць выявіць сувязь паміж асн. паняццямі механікі, оптыкі і квантавай механікі (оптыка-мех. аналогіі). Абагульненне варыяцыйных прынцыпаў механікі на неперарыўныя квантава-рэлятывісцкія сістэмы склала матэм. аснову тэорыі поля. Дасягненні аналітычнай механікі садзейнічалі развіццю балістыкі, нябеснай механікі, тэорыі ўстойлівасці, тэорыі аўтам. кіравання і інш.

Літ.:

Кильчевский Н.А. Курс теоретической механики. Т. 2. М., 1977.

А.І.Болсун.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАР (ад лац. vector вядучы, нясучы),

1) накіраваны адрэзак пэўнай даўжыні. Абазначаецца лац. літарамі тлустага шрыфту a, A (AB — калі пачатак вектара ў пункце A, канец у пункце B) ці светлага шрыфту з рыскай або стрэлкай над імі: a̅, a, A̅B̅, AB. Даўжынёй (модулем) вектара наз. даўжыня адрэзка AB і абазначаецца AB ці |AB|.

Два вектары роўныя, калі яны паралельныя ці аднолькава накіраваныя і маюць аднолькавую даўжыню. Вектар, пачатак і канец якога супадаюць, наз. нуль-вектарам, даўжыня яго роўная нулю. Яму не прыпісваецца ніякі напрамак. Вектар, даўж. якога роўная адзінцы, наз. адзінкавым. На плоскасці ці ў прасторы ўсякі вектар можа быць паказаны накіраваным адрэзкам, адкладзеным ад пачатку каардынат. Таму вектар можна задаваць трыма сапраўднымі лікамі (x, y, z) — праекцыямі вектара на восі прамавугольнай сістэмы каардынат (каардынатамі вектара). У n-мернай прасторы вектар вызначаецца як упарадкаваная сістэма n сапраўдных лікаў (x1, x2, ..., xn).

З дапамогай вектара ў матэматыцы, фізіцы і механіцы апісваюцца сілы, скорасці, паскарэнні і інш. велічыні, зададзеныя лікам і напрамкам. Гл. таксама Вектарнае злічэнне.

2) У пераносным сэнсе — пэўны кірунак у якой-н. сферы дзейнасці ці адносін (напр., у палітыцы, эканоміцы і г.д.).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТЭАРАЛАГІ́ЧНЫЯ ПРЫЛА́ДЫ,

прылады, якія служаць для рэгістрацыі і вымярэння разнастайных метэаралагічных элементаў. Існуюць М.п. з візуальным адлікам і з аўтам. рэгістрацыяй адпаведных метэаралагічных элементаў (самапісцы), таксама дыстанцыйныя М.п., у т.л. размешчаныя на метэаралагічных спадарожніках. Для даследавання свабоднай атмасферы (за межамі прыземнага слоя паветра) выкарыстоўваюцца дыстанцыйныя аэралагічныя прылады — радыёзонды, метэарографы і інш. М.п. выкарыстоўваюць таксама для вызначэння клімату памяшканняў, напр., у музеях, дзе істотнае значэнне мае т-ра і вільготнасць паветра. Т-ру паветра і глебы вымяраюць метэаралагічнымі тэрмометрамі розных тыпаў і тэрмографамі. Вільготнасць паветра вызначаюць псіхрометрамі, гігрометрамі, гігрографамі. Колькасць і інтэнсіўнасць атм. ападкаў вымяраюць дажджамерамі, або ападкамерамі, і плювіёграфамі. Вышыню снегавога покрыва звычайна вымяраюць з дапамогай пастаянных і пераносных снегамерных рэек, запасы вады ў ім — аб’ёмнымі і вагавымі снегамерамі. Для вызначэння атм. ціску выкарыстоўваюць рознага тыпу барометры і барографы. Самае простае прыстасаванне для вызначэння напрамку і скорасці ветру — флюгер. Больш дасканалыя вынікі даюць анемометры, анемарумбамеры, анемарумбографы. Шэраг прылад прызначаны для вымярэння прамой і рассеянай сонечнай радыяцыі, выпрамянення зямной паверхні і атмасферы (актынометры, альбедаметры, балансамеры, піранометры, піргеліёметры і інш.), працягласць сонечнага ззяння рэгіструецца геліёграфамі. Існуюць М.п., якія вызначаюць выпарэнне (выпаральнікі), колькасць расы (расографы) і інш. характарыстыкі.

Г.Г.Камлюк.

т. 10, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕХА́НІКА СУЦЭ́ЛЬНЫХ АСЯРО́ДДЗЯЎ,

раздзел механікі, які вывучае паводзіны кантынуумаў матэрыяльных пунктаў, што неперарыўна запаўняюць аб’ёмы геам. прасторы. Падзяляецца на гідрааэрамеханіку, газавую дынаміку, механіку сыпкіх асяроддзяў, пругкасці тэорыю, пластычнасці тэорыю і інш.

У М.с.а. рэчыва разглядаецца як неперарыўнае суцэльнае асяроддзе без уліку атамнамалекулярнай будовы; для яго ўводзяцца паняцці шчыльнасці, перамяшчэння, скорасці, т-ры, унутр. энергіі, энтрапіі, патоку цяпла і інш. як неперарыўна дыферэнцавальных функцый. Адначасова лічыцца неперарыўным размеркаванне ўсіх характарыстык асяроддзя, што дае магчымасць выкарыстоўваць апарат вышэйшай матэматыкі для неперарыўных функцый. У М.с.а. зыходнымі для вывучэння любых асяроддзяў (напр., газаў, вадкасцей, плазмы, дэфармаваных цвёрдых цел) з’яўляюцца ўраўненні руху (ці раўнавагі) асяроддзя, атрыманыя на аснове законаў механікі: ураўненні неразрыўнасці (суцэльнасці) асяроддзя як вынік закону захавання масы; закон захавання энергіі. Асаблівасці кожнага канкрэтнага асяроддзя ўлічваюцца ўраўненнем стану або рэалагічным ураўненнем, дзе ўстанаўліваецца залежнасць паміж напружаннямі і дэфармацыямі (ці скарасцямі дэфармацый). Пры рашэнні кожнай задачы задаюцца пачатковыя і гранічныя ўмовы, выгляд якіх залежыць ад асаблівасцей асяроддзя.

На Беларусі даследаванні па праблемах М.с.а. праводзяцца ў Нац. АН, БДУ, БПА і інш.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. 2 изд. М., 1954;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

А.У.Чыгараў.

т. 10, с. 322

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАВЕ́ТРАНА-РЭАКТЫ́ЎНЫ РУХАВІ́К (ПРР),

рэактыўны рухавік, у якім для гарэння паліва выкарыстоўваецца кісларод атмасфернага паветра, што ўсмоктваецца ў камеру згарання. Пры выкарыстанні хім. паліва кісларод паветра служыць акісляльнікам, што абумоўлівае высокую эканамічнасць ПРР у параўнанні з хім. ракетнымі рухавікамі.

Паводле спосабу сціскання паветра, што паступае ў камеру згарання, ПРР падзяляюцца на бескампрэсарныя і кампрэсарныя. У бескампрэсарных ПРР сцісканне адбываецца ў паветразаборніку за кошт кінетычнай энергіі набягаючага паветр. патоку. Да такіх рухавікоў адносяцца праматочныя ПРР (згаранне паліва ў іх адбываецца ў скразным — праматочным канале; выкарыстанне іх мэтазгодна ў апаратах са звышгукавымі скарасцямі палёту, а для разгону патрэбны дадатковы рухавік) і пульсуючыя (згаранне паліва адбываецца кароткімі паслядоўнымі ўспышкамі; могуць развіваць цягу на месцы; апараты з такімі рухавікамі не патрабуюць сілавых стартавых паскаральнікаў). У кампрэсарных ПРР сцісканне паветра, акрамя паветразаборніка, робіцца спец. кампрэсарамі. Такімі рухавікамі з’яўляюцца турбарэактыўныя рухавікі і турбавінтавыя рухавікі. Да ПРР адносяцца таксама некаторыя камбінаваныя рухавікі (напр., турбапраматочныя). Цяга ПРР залежыць ад вышыні і скорасці палёту.

Схемы паветрана-рэактыўных рухавікоў: а — праматочнага (1 — паветразаборнік, 2 — стабілізатар полымя, 3 — камера згарання); б — пульсуючага (1 — клапанная рашотка, 2 — фарсункі, 3 — камера згарання, 4 — рэактыўнае сапло).

т. 11, с. 467

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТЭНАСФЕ́РА (ад грэч. asthenēs слабы + сфера),

Гутэнберга слой, слой паніжанай вязкасці ў верхняй мантыі Зямлі, які падсцілае літасферу. Вылучаюць па паменшанай скорасці праходжання сейсмічных хваляў і павышанай электраправоднасці адносна літасферы і астатняй мантыі. Астэнасфера складзена з перыдатытаў, рэчыва якіх знаходзіцца ў пластычным і вязкім стане, можа цячы і ствараць гідрастатычную раўнавагу (ізастазію). Пад акіянамі пашырана ўсюды з глыб. 50—70 км, пад кантынентамі адзначана з глыб. 80—100 км, найб. выразная — у тэктанічна актыўных зонах стараж. платформаў і пад маладымі платформамі. Пад астраўнымі дугамі астэнасфера шматслойная (поліастэнасфера). Рэчыва астэнасферы ў такіх структурах часткова расплаўлена (на 1—10%). Пад стабільнымі ўчасткамі стараж. шчытоў і дакембрыйскіх пліт выяўлена не ўсюды. Ніжняя мяжа астэнасферы знаходзіцца на глыб. 250—300 км (да 400 км). На тэр. Беларусі астэнасфера вылучаецца пад Беларускай антэклізай на глыб. 200—210 км (магутнасць 20—30 км) і пад Прыпяцкім прагінам на глыб. 90—100 км (магутнасць да 140 км). Рэчыва астэнасферы ўдзельнічае ў фарміраванні пакладаў карысных выкапняў, з ёй звязаны працэсы магматызму і метамарфізму.

Астэнасфера адкрыта ў 1914 Дж.Барэлам. Першае пацвярджэнне яе існавання атрымаў у 1926 Б.Гутэнберг (адсюль другая назва). Ён паказаў, што ў астэнасферы адбываюцца працэсы, якія выклікаюць гарызантальныя і вертыкальныя рухі блокаў літасферы.

Г.І.Каратаеў.

т. 2, с. 60

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯГЕАХІ́МІЯ (ад бія... + геахімія),

галіна геахіміі, якая вывучае геахім. працэсы ў біясферы ў іх сувязі з працэсамі біял. кругавароту рэчываў на працягу геал. гісторыі Зямлі і ў сучасных умовах. Даследуе: жывое рэчыва, яго ўздзеянне на геахім. працэсы; гісторыю, біягенную міграцыю, размеркаванне і канцэнтрацыю ў зямной кары хім. элементаў; біягеахім. правінцыі ў ходзе біягеахім. раянавання; геахім. цыклы біягенных элементаў праз пабудову колькасных мадэляў; ролю арганізмаў ва ўтварэнні і разбурэнні радовішчаў карысных выкапняў; тэрыторыі антрапагеннага ўздзеяння (гар. экасістэмы, цэнтры здабыўной і перапрацоўчай прам-сці); біягеахім. эндэміі чалавека і жывёл; геахім. дзейнасць арганізмаў на забруджаных цяжкімі металамі і радыенуклідамі ўчастках; прагназуе развіццё біясферы.

Заснавальнік біягеахіміі — рус. вучоны У.І.Вярнадскі, які арганізаваў першую ў свеце біягеахім. лабараторыю (1918), пашырыў уяўленне аб біясферы як абалонцы Зямлі, даў тлумачэнне геахім. дзейнасці жывых істот, увёў вызначэнні біягеахім. энергіі засялення Зямлі як планеты, скорасці расцякання і паўсюднасці жыцця і інш. Гэтыя даследаванні развіваў А.П.Вінаградаў, які вызначыў сярэдні хім. састаў жывога рэчыва, распрацаваў тэарэт. ўяўленні аб біягеахім. правінцыях, што паслужыла асновай для біягеахім. пошукаў карысных выкапняў. На Беларусі праблемы біягеахіміі даследуюцца з 1960-х г. (К.І.Лукашоў, А.К.Лукашоў, У.А.Кузняцоў, В.Б.Кадацкі і інш.). Работы вядуцца ў ін-тах АН Беларусі (геал. навук, праблем выкарыстання прыродных рэсурсаў і экалогіі, эксперым. батанікі, заалогіі, фотабіялогіі), у БДУ, БСГА, БелНДІ земляробства і кармоў і інш.

І.К.Вадкоўская.

т. 3, с. 167

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІТАСФЕ́РА (ад літа... + сфера),

знешняя абалонка «цвёрдай» Зямлі, якая ўключае зямную кару і верхнія ўчасткі мантыі да паверхні астэнасферы. Тэрмін «Л» прапанаваў амер. геолаг Дж.Барэл у 1916. Магутнасць Л. ад 5—100 км пад акіянамі (мінім. пад сярэдзінна-акіянічнымі хрыбтамі) да 25—200 км пад кантынентамі (макс. пад шчытамі стараж. платформаў). Падзяляецца на верхні пругкі (магутнасць некалькі дзесяткаў кіламетраў) і ніжні пластычны слаі. На розных узроўнях у тэктанічна актыўных абласцях назіраецца расслоенасць Л. па гарызонтах паніжанай вязкасці (паніжанай скорасці сейсмічных хваль). Найб. буйныя структурныя адзінкі Л. — літасферныя пліты (памерамі ў папярочніку 1—10 тыс. км). У сучасную эпоху Л. падзелена на 7 галоўных (2 амерыканскія, еўраазіяцкую, афр., аўстрал., антарктычную і ціхаакіянскую) і некалькі больш дробных пліт. Граніцы пліт з’яўляюцца зонамі макс. тэктанічнай, сейсмічнай і вулканічнай актыўнасці. Паводле тэорыі тэктонікі пліт (гл. Вегенера гіпотэза, Дрэйф кантынентаў, Мабілізм, Тэктанічныя гіпотэзы) літасферныя пліты рухаюцца па астэнасферы са скорасцю да дзесяткаў сантыметраў за год. Вертыкальныя рухі (са скорасцю ад 1 см да некалькіх дзесяткаў сантыметраў за год) адбываюцца па сістэме субвертыкальных глыбінных разломаў, якія разбіваюць літасферныя пліты на блокі памерамі ад дзесяткаў да соцень кіламетраў. Блокі знаходзяцца ў стане, блізкім да ізастатычнай раўнавагі (гл. Ізастазія). Структуру і рухі літасферных пліт і блокаў вывучаюць геадынаміка, геафізіка, тэктоніка.

А.М.Каўхута, Р.Р.Паўлавец.

т. 9, с. 299

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕХА́НІКА ЦЕЛ ПЕРАМЕ́ННАЙ МА́СЫ,

раздзел механікі, што вывучае рух цел, маса якіх змяняецца ў працэсе руху; тэарэт. аснова рашэння многіх задач авіяц. і ракетнай тэхнікі, а таксама тэарэт. і нябеснай механікі, касманаўтыкі і інш. Асноватворныя даследаванні па гэтых праблемах належаць І.У.Мяшчэрскаму і К.Э.Цыялкоўскаму.

Змена масы цела адбываецца пры аддзяленні (адкідванні) часцінак рэчыва (напр., згарэлага паліва) або пры далучэнні (наліпанні) часцінак (напр., пры ўсмоктванні паветра рэактыўным рухавіком самалёта, наліпанні касм. пылу на метэарыт). Дыферэнцыяльнае ўраўненне руху цела (матэрыяльнага пункта) пераменнай масы m, выведзенае Мяшчэрскім (1904): m dv dt = F + dm1 dt u1 + dm2 dt u2 дзе v — скорасць цела; t — час; F — раўнадзейная ўсіх знешніх сіл; u1 і u2 — адносныя скорасці часцінак, якія аддзяляюцца і далучаюцца; dm1dt і dm2dt — секундны расход і прыход масы адпаведна. Аддзяленне часцінак абумоўлівае рэактыўную цягу F1 = dm1 dt u1 , а далучэнне — тармазную сілу F2 = dm2 dt u2 . Аналагічнае ўраўненне пры ўмове F2 = 0 атрымана Мяшчэрскім у 1897.

Літ.:

Мещерский И.В. Работы по механике тел переменной массы. 2 изд. М., 1952;

Циолковский К.Э. Собр. соч. Т. 2. М., 1954.

А.І.Болсун.

т. 10, с. 322

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)