БРЫЗА́НТНЫЯ ВЫБУХО́ВЫЯ РЭ́ЧЫВЫ,
другасныя выбуховыя рэчывы, асноўны рэжым выбуховага ператварэння якіх — дэтанацыя. Паводле саставу падзяляюць на індывідуальныя злучэнні і сумесі.
Большасць індывідуальных брызантных выбуховых рэчываў — араматычныя нітразлучэнні (найважнейшыя — трынітраталуол і трынітрабензол), нітраміны (гексаген, акгаген), нітраэфіры (нітрагліцэрын, нітраты цэлюлозы). Сумесевыя брызантныя выбуховыя рэчывы — сплавы нітразлучэнняў, мех. сумесі нітразлучэнняў і іх сплаваў з інш. рэчывамі (напр., алюматол), сумесі нітрату амонію з нітразлучэннямі (аманіты) і з невыбуховым гаручым (дынамоны), сумесі на аснове вадкіх нітратаў (напр., дынаміты).
Выкарыстоўваюць у горнай прам-сці, пры апрацоўцы металаў выбухам, у сейсмаразведцы, у ваен. тэхніцы для вытв-сці боепрыпасаў.
Літ.:
Орлова Е.Ю. Химия и технология бризантных взрывчатых веществ. 3 изд. Л., 1981.
т. 3, с. 274
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АКУСТЫ́ЧНЫЯ МАТЭРЫЯ́ЛЫ,
матэрыялы для ўзбуджэння, прыёму, перадачы і паглынання акустычных хваляў. У акустаэлектроніцы як гукаправоды выкарыстоўваюцца матэрыялы з малымі акустычнымі стратамі ў рабочым дыяпазоне частот: шкло, сплавы на аснове магнію, плаўлены і крышт. кварц і інш.; у акустаоптыцы як святлогукаправоды — матэрыялы, празрыстыя ў адпаведнай вобласці аптычнага спектра, з малымі акустычнымі стратамі і з высокай акустааптычнай эфектыўнасцю ў рабочым дыяпазоне частот: свінцовае, тэлуравае, халькагеніднае шкло, крышталі паратэлурыту, малібдэну свінцу, фасфід і арсенід галію і інш. Для вырабу акустычных выпрамяняльнікаў і прыёмнікаў выкарыстоўваюцца магнітастрыкцыйныя матэрыялы і п’езаэлектрычныя матэрыялы, у буд-ве — гукаізаляцыйныя і гукапаглынальныя матэрыялы, якія характарызуюцца малым каэфіцыентам адбіцця і вял. каэфіцыентам паглынання акустычных ваганняў на гукавых частотах (парапласты, мінер. вата, порыстая гума і інш.).
Ю.М.Шчэрбак.
т. 1, с. 219
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЛЬВАНАСТЭ́ГІЯ
(ад гальвана... + грэч. stegō укрываю),
спосаб нанясення на метал. вырабы метал. пакрыццяў электралітычным асаджэннем. Робіцца для аховы вырабаў ад карозіі, павышэння іх цвёрдасці і зносаўстойлівасці, у дэкар. і інш. мэтах.
Перад нанясеннем пакрыцця паверхню вырабу абястлушчваюць, пратраўліваюць, шліфуюць і паліруюць. Працэс гальванастэгіі адбываецца ў гальванічнай ванне, дае анодам служаць металы, што раствораны ў электраліце, а катодам — вырабы. Пры працяканні пастаяннага эл. току метал з электраліту асаджаецца на паверхні вырабу. Наносяцца медзь (мядненне), цынк (цынкаванне), кадмій (кадміраванне), высакародныя металы, сплавы і інш. Пакрыцці адрозніваюцца моцным счапленнем з металам асновы, малой порыстасцю і дробнакрышталічнай структурай. Якасць гальванічных пакрыццяў і скорасць працэсу гальванастэгіі абумоўлены шчыльнасцю эл. току, саставам і т-рай электраліту.
т. 4, с. 475
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗВЫШПРАВО́ДНЫ МАГНІ́Т,
від электрамагніта ці саленоіда, абмоткі якіх зроблены са звышправоднага матэрыялу (гл. Звышправаднікі). Пры кароткім замыканні такой абмоткі наведзены ў ёй эл. ток захоўваецца практычна бясконца доўга.
Магн. поле незатухальнага току, які цыркулюе па абмотцы З.м., выключна стабільнае і пазбаўлена пульсацый. Абмотка З.м. траціць уласцівасці звышправоднасці пры павелічэнні т-ры вышэй за крытычную або пры дасягненні крытычнага току ці крытычнага магнітнага поля. Таму абмоткі З.м. робяць з матэрыялу з вял. крытычнымі значэннямі гэтых параметраў (сплавы ніобій—цырконій Nb—Zr. ніобій—тытан Nb—Ti; злучэнні ніобію з волавам Nb3Sn, ванадыю з галіем V3Ga і інш.). З.м. выкарыстоўваюцца для даследавання магн., эл. і аптычных уласцівасцей матэрыялаў, у эксперыментах па вывучэнні плазмы, атамных ядраў і элементарных часціц, у тэхніцы сувязі, радыёлакацыі і інш.
т. 7, с. 42
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАЛЬФРА́М
(лац. Wolframium),
W, хімічны элемент VI гр. перыяд. сістэмы, ат. н. 74, ат. м. 183,85. Прыродны складаецца з 5 ізатопаў 180W (0,135%), 182W (26,41%), 183W (14,4%), 184W (30,64%) і 186W (28,41%). У зямной кары знаходзіцца 10-4% па масе, трапляецца ў выглядзе мінералаў (гл. Вальфраміт). Светла-шэры метал, шчыльн. 19 300 кг/м³, tпл 3380 ± 10 °C (самы тугаплаўкі метал), tкіп 5900—6000 °C. Пры звычайных умовах у кіслотах (акрамя сумесі азотнай і плавіковай) і шчолачах не раствараецца. Акісляецца кіслародам паветра пры t > 400 °C і ў расплаве шчолачаў (утварае вальфраматы). Пры награванні ўзаемадзейнічае з галагенамі, азотам, вугляродам (гл. Вальфраму карбіды). Здабываюць з вальфрамавых руд. Атрымліваюць аднаўленнем аксідаў вадародам да парашкападобнага вальфраму. Метал вырабляюць метадамі парашковай металургіі. Выкарыстоўваюць як аснову сплаваў (гл. Вальфрамавыя сплавы), для легіравання сталі, у вытв-сці вакуумных прылад і ніцяў лямпаў напальвання.
І.В.Боднар.
т. 3, с. 494
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫСОКАЧАСТО́ТНАЯ ЗВА́РКА,
зварка з награваннем металаў або пластмас токамі высокай частаты. Адрозніваюць высокачастотную зварку металаў ціскам і плаўленнем, бесперапынна паслядоўную (зварным швом) і адначасовую, з індукцыйным або кантактным (найб. пашырана) падводам току.
Пры зварцы швом створанае токам высокачастотнае магнітнае поле пранікае ў прамежак паміж краямі вырабаў, якія аплаўляюцца і сціскаюцца. Скорасць зваркі да 1 м/с і болей, рабочыя частоты 0,01, 0,44 і 1,76 МГц. Гэтым спосабам зварваюць сплавы жалеза, алюмінію, медзі і інш. (пры вытв-сці труб, кабеляў, бэлек, злучэнні лістоў, стужак і г.д.). Індукцыйная высокачастотная зварка заключаецца ў глыбінным індукцыйным нагрэве тарцоў вырабаў і іх сцісканні. Выкарыстоўваецца для злучэння малавугляродзістых і нізкалегіраваных сталей (пры стыкоўцы труб, дзе захоўваецца ўнутр. сячэнне). Пры высокачастотнай зварцы плаўленнем тарцы загатовак сумесна аплаўляюць спец. індуктарам. Такім спосабам робяць карпусы метал. вырабаў, злучаюць трубы з лістамі. Пры высокачастотнай зварцы пластмас іх награюць у пераменным эл. полі рабочага кандэнсатара (гл. Дыэлектрычны нагрэў), які служыць і зварачным прэсам. Так атрымліваюць вырабы з ліставых і плёначных тэрмапластыкаў.
т. 4, с. 323
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗВЫШПРАВАДНІКІ́,
рэчывы, у якіх пры ахаладжэнні ніжэй за крытычную тэмпературу электрычнае супраціўленне падае практычна да нуля — мае месца звышправоднасць.
Ад інш. электраправодных матэрыялаў З. адрозніваюцца поўнай адсутнасцю супраціўлення пастаяннаму эл. току, т.зв. захопам магн. патоку ўнуры кольца з З. і эфектам Майснера (магн. поле не пранікае ў тоўшчу З. пры напружанасці поля, меншай за крытычную, — сілавыя лініі поля агінаюць З.; на гэтым эфекце заснавана дзеянне звышправодных магн. экранаў). Да З. адносяцца многія металы (свінец Pb, алюміній Al, талій Ti, ніобій Nb і інш.), метал сплавы (напр., свінец—золата Pb—Au, ніобій—тытан—цырконій Nb—Ti—Zr), інтэрметалічныя злучэнні, карбіды, нітрыды, некаторыя паўправаднікі і палімеры. З. выкарыстоўваюцца для стварэння звышправодных магнітаў, балометраў, магутных электрагенератараў і рухавікоў, сілавых кабеляў і трансфарматараў вял. магутнасці для сістэм цэнтралізаванага размеркавання электраэнергіі, звышадчувальных дэтэктараў выпрамяненняў, у высакаскораснай лічбавай электроніцы і інш. Гл. таксама Высокатэмпературная звышправоднасць, Джозефсана эфект.
Літ.:
Физико-химия сверхпроводников. М., 1976;
Шмидт В.В. Введение в физику сверхпроводников. М., 1982.
Я.М.Галалобаў.
т. 7, с. 41
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АНТЫФРЫКЦЫ́ЙНЫЯ МАТЭРЫЯ́ЛЫ
(ад анты... + лац. frictio трэнне),
матэрыялы для дэталяў машын, якія працуюць ва ўмовах трэння слізгання (падшыпнікі, укладышы, утулкі і інш.). Антыфрыкцыйныя матэрыялы маюць высокую ўстойлівасць да зносу і карозіі, добрую прыработку, мінім. каэфіцыент трэння, вытрымліваюць мех. нагрузкі без змены ўласцівасцяў. Антыфрыкцыйныя ўласцівасці антыфрыкцыйных матэрыялаў залежаць ад структурнага стану паверхневых слаёў, мікратапаграфіі кантактуючых паверхняў і ўмоў фрыкцыйнага ўзаемадзеяння.
Найб. пашыраныя антыфрыкцыйныя матэрыялы: сплавы на аснове каляровых металаў (бабіты, бронза, латунь і інш.), чыгун, пластычныя масы, драўніна (у т. л. мадыфікаваная), кампазіты на аснове металаў, металакерамікі і палімераў. Асобная група антыфрыкцыйных матэрыялаў — самазмазвальныя матэрыялы; яны змяшчаюць кампаненты (напр., графіт), якія выконваюць пры трэнні ролю змазвальнага асяроддзя. Для надання матэрыялам антыфрыкцыйных уласцівасцяў іх паверхню мадыфікуюць хіміка-тэрмічнай, лазернай, іонна-прамянёвай апрацоўкай, нанясеннем зносаўстойлівых пакрыццяў, паверхнева-пластычным дэфармаваннем. Антыфрыкцыйныя матэрыялы выкарыстоўваюць ва ўмовах сухога трэння (у газах, паветры, вакууме); для работы з малавязкімі вадкасцямі без змазвальнага дзеяння (вада, арган. растваральнікі), з вадкімі ці пластычнымі змазкамі. На Беларусі вывучэннем і стварэннем антыфрыкцыйных матэрыялаў займаюцца ін-ты механікі металапалімерных сістэм і фізіка-тэхнічны АН Беларусі, Беларускае НВА парашковай металургіі.
А.У.Белы.
т. 1, с. 403
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВО́ЛАВА,
цына (лац. Stannum), Sn, хімічны элемент IV групы перыяд. сістэмы, ат. н. 50, ат. м. 118,710. Прыроднае волава складаецца з 10 стабільных ізатопаў: 112Sn, 114Sn – 120Sn, 122Sn, 124Sn; найб. пашыраныя — 120Sn (32,59%) і 118Sn (24,22%). У зямной кары змяшчаецца 8·10-3 % па масе. Трапляецца ў мінералах (гл. Алавяныя руды). Вядома з глыбокай старажытнасці (2-е тыс. да н.э.). Серабрыста-белы метал, мяккі і пластычны, tпл 231,91 °C, tкіп 2620 °C, паліморфны (гл. Полімарфізм); пры т-ры вышэй за 13,2 °C існуе белае волава (β-Sn, шчыльн. 7295 кг/м³), якое пры т-ры ніжэй за 13,12 °C пераходзіць у шэрае волава (α-Sn, шчыльн. 5846 кг/м³), пры гэтым метал ператвараецца ў шэры парашок. У звычайных умовах устойлівае да ўздзеяння вады і кіслароду, узаемадзейнічае з галагенамі, неарган. к-тамі, пры награванні — з дыаксідам вугляроду, неметаламі (серай, селенам, фосфарам і інш.), з растворамі шчолачаў, з металамі (кальцыем, магніем, тытанам і інш.) утварае інтэрметал. злучэнні (гл. Волава злучэнні). Атрымліваюць з алавяных руд і рэгенерацыяй адходаў. Выкарыстоўваюць як кампанент сплаваў бронза, латунь, бабіт (гл. Волава сплавы), для аховы металаў ад карозіі (луджэнне).
І.В.Боднар.
т. 4, с. 259
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́ДКІЯ ПАЎПРАВАДНІКІ́,
вадкасці, якія маюць уласцівасці паўправаднікоў. Адкрыты А.Ф.Іофе і А.Р.Рэгелем у пач. 1950-х г. Па фармальных прыкметах вадкія паўправаднікі — расплавы з удзельнай электраправоднасцю пры нармальных умовах у інтэрвале (10-8 — 10-5) Ом-1·м-1; маюць электронную электраправоднасць.
Вадкія паўправаднікі ўтвараюцца пры плаўленні шэрагу крышталічных кавалентных паўправаднікоў (селен Se, злучэнні тыпу , , , і інш.), пры ўмове захавання кавалентных міжатамных сувязяў. У гэтым выпадку не мяняецца (ці нязначна памяншаецца) удзельная электраправоднасць і захоўваецца яе паўправадніковы характар тэмпературнай залежнасці ў адрозненне ад некаторых крышталічных паўправаднікоў (крэмній Si, германій Ge, і інш.), электраправоднасць якіх пры плаўленні рэзка павялічваецца да значэнняў, характэрных для металаў. Некаторыя вадкія паўправаднікі пры далейшым павелічэнні т-ры трацяць паўправадніковыя ўласцівасці і набываюць металічныя (напр., сплавы тэлур—селен Te—Se, багатыя Te).
Вадкія паўправаднікі выкарыстоўваюцца ў тэрмаэлементах, радыяцыйнаўстойлівых высокатэмпературных тэрмістарах і пераключальніках і інш.
Літ.:
Катлер М. Жидкие полупроводники: Пер. с англ. М., 1980;
Глазов В.М., Кольцов В.Б., Курбатов В.А. Экспериментальное исследование электрофизических свойств кремния вблизи фазового перехода кристалл — расплав в твердом и жидком состоянии. // Расплавы. М., 1987. Т. 1, вып. 1.
т. 3, с. 439
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)