КУРЧА́ТАЎ (Ігар Васілевіч) (12.1.1903, г. Сім Чэлябінскай вобл., Расія — 7.2.1960),
расійскі фізік, арганізатар і кіраўнік работ па атамнай навуцы і тэхніцы ў СССР. Акад.АНСССР (1943), тройчы Герой Сац. Працы (1949, 1951, 1954). Скончыў Крымскі ун-т (1923). У 1925—42 у Ленінградскім фізіка-тэхн. ін-це АНСССР. Разам з інш. адкрыў з’яву сегнетаэлектрычнасці (1929), выявіў ядз. ізамерыю (1935). Пад яго кіраўніцтвам пабудаваны першы ў СССР цыклатрон (1939), адкрыта спантаннае дзяленне ядраў урану (1940), распрацавана процімінная ахова ваен. караблёў (1941), створаны першы ў Еўропе ядз. рэактар (1946), першая ў СССР атамная бомба (1949), першая ў свеце тэрмаядз. бомба (1953) і АЭС (1954), пачаліся даследаванні па праблеме кіравальнага тэрмаядз. сінтэзу. Яго імем названы хім. элемент курчатовій. Ленінская прэмія 1957, Дзярж. прэміі СССР 1942, 1949, 1951, 1954.
І.В.Курчатаў.
Літ.:
Основатели советской физики. М., 1970. С. 200—223;
Советские ученые: Очерки и воспоминания. М., 1983. С. 92—150.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДБО́РУ ПРА́ВІЛЫў фізіцы,
умовы, што вызначаюць магчымасць пераходу квантавых сістэм (ядраў, атамаў, малекул і інш.) з пачатковага стану ў канчатковы пры фіз. працэсах, звязаных з выпрамяненнем і паглынаннем энергіі.
Адбору правілы выражаюць выкананне пэўных захавання законаў у дадзеным працэсе і фармулююцца ў выглядзе суадносін паміж квантавымі лікамі. Аснова тэарэт. вызначэння адбору правілаў — патрабаванне адрознення ад нуля імавернасці пераходу паміж пач. і канчатковым станамі сістэмы, напр., імавернасць дыпольных пераходаў, звязаных з выпрамяненнем святла атамам, адрозніваецца ад нуля пры змене квантавых лікаў; ΔL = ±1, Δs = 0, ΔI = 0 або ±1 (за выключэннем, калі I = 0 у пач. і канчатковым станах), дзе I, L і s — адпаведна квантавыя лікі поўнага моманту імпульсу электроннай абалонкі, арбітальнага моманту і агульнага спінавага моманту электронаў. Пераходы, якія падпарадкоўваюцца адбору правілам дыпольнага выпрамянення, наз. дазволенымі, у адваротным выпадку — забароненымі (іх імавернасць у атамах вельмі малая). Адпаведныя адбору правілы існуюць у ядз. спектраскапіі і фізіцы элементарных часціц.
паказчык колькаснага параўнання біял. ўздзеяння розных відаў радыеактыўнага выпрамянення. Вызначае, у колькі разоў біялагічнае дзеянне іанізавальных выпрамяненняў пэўнага тыпу (напр., альфа-, бэта-выпрамяненне, нейтроны і інш.) большае (ці меншае) за ўздзеянне на той жа біял. аб’ект стандартнага выпрамянення (жорсткіх рэнтгенаўскіх ці гама-прамянёў). Асобныя віды выпрамяненняў суправаджаюцца вызваленнем рознай колькасці энергіі і маюць пэўную пранікальную здольнасць, таму па-рознаму ўздзейнічаюць на жывыя арганізмы. Чым больш энергіі выпрамяненне перадае тканкам, тым больш пашкоджанняў атрымлівае жывы арганізм. Напр., альфа-выпрамяненне (паток цяжкіх часціц — нейтронаў і пратонаў) мае невял. пранікальную здольнасць, што не дазваляе пранікнуць праз вонкавы слой скуры, аднак яно лічыцца найбольш небяспечным пры траплянні радыенуклідаў унутр арганізма праз раны, з ежай ці пры ўдыханні. Адносная біялагічная эфектыўнасць для электроннага, пазітроннага, рэнтгенаўскага і гама-выпрамянення, а таксама хуткіх пратонаў блізкая да 1, для альфа-часціц і хуткіх нейтронаў роўная 10, для цяжкіх шматзарадных іонаў і ядраў аддачы — 20.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БОР ((Bohr) Нільс Хенрык Давід) (7.10.1885, Капенгаген — 18.11.1962),
дацкі фізік-тэарэтык, адзін са стваральнікаў квантавай механікі. Чл. Дацкай АН (1918), замежны чл.АНСССР (1929) і інш. акадэмій. Скончыў Капенгагенскі ун-т (1908), з 1916 праф. гэтага ун-та. З 1920 дырэктар створанага ім Ін-та тэарэт. фізікі (Ін-т Нільса Бора). У 1943—45 працаваў у ЗША. Навук. працы па квантавай тэорыі атама, ядз. фізіцы, па філас. праблемах прыродазнаўства і тэорыі пазнання. Прапанаваў (1913) квантавую мадэль атама (гл.Бора тэорыя), якая адыграла важную эўрыстычную ролю ў стварэнні квантавай механікі. Прадказаў спантаннае дзяленне ядраў урану, прапанаваў кропельную мадэль і тэорыю састаўнога ядра атама (1936). Сфармуляваў адпаведнасці прынцып і дапаўняльнасці прынцып. Удзельнік барацьбы з атамнай пагрозай. Нобелеўская прэмія 1922.
Тв.:
Рус.пер. — Избр. науч. труды. [Т.]1—2. М., 1970—71.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МІКСАСПАРЫ́ДЫІ (Myxozoa),
тып (па інш. класіфікацыях клас, атрад) прасцейшых. 2 класы (атр.): міксаспоравыя (Myxosporea) і актынаміксідыі, або актынаспоравыя (Actinosporea). Паразітуюць у поласцях, тканках або клетках беспазваночных і ніжэйшых пазваночных жывёл (пераважна рыб, радзей земнаводных і паўзуноў).
Памеры ад 15 мкм да 11 мм. У жыццёвым цыкле 2 стадыі: паразітычная вегетатыўная (трафонт) і рассяляльная (спора). Трафонт мае 2 тыпы ядраў і 2 тыпы клетак — вегетатыўныя і генератыўныя; размнажаецца бясполым шляхам. Вегетатыўныя формы — рухомыя шмат’ядзерныя плазмодыі з вегетатыўнымі ядрамі і генератыўнымі клеткамі, што актыўна перамяшчаюцца ўнутры плазмодыя. З генератыўных клетак пасля дзяленняў (апошняе з якіх меёз) утвараюцца шматклетачныя споры (дыяметр да 25 мкм). Калі спора трапляе ў арганізм жывёлы-гаспадара, з яе вызваляецца амёбападобны зародак, які перамяшчаецца да месца паразітавання. У тканкавых М. плазмодыі нерухомыя, часта абкружаныя цыстай (дыяметр да 6 см), утворанай злучальнай тканкай гаспадара.
Да арт.Міксаспарыдыі: А — плазмодыі са спорамі (1 — цэратамікса апендыкулята; 2 — лептатэка агіліс; 3 — хлараміксум лейдыгі); Б — спора (1 — зародак; 2 — ядры зародка; 3 — трубка; 4 — спіральная нітка).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕАХІМІ́ЧНЫЯ ПО́ШУКІ карысных выкапняў, метады пошуку карысных выкапняў, заснаваныя на заканамернасцях размеркавання і міграцыі хім. элементаў у верхніх слаях зямной кары. Падзяляюцца на літагеахім., гідрахім., біягеахім., газагеахім. (атмахім.), а таксама радыёметрычныя метады. Гэтыя метады заснаваны на тым, што ў пакладах карысных выкапняў канцэнтрацыя пэўных хім. элементаў значна вышэйшая за мясц.геахім. фон (які блізкі да лічбаў кларкаў), што вядзе да ўтварэння арэолаў рассейвання элементаў і геахімічных анамалій.
Літагеахім. метады грунтуюцца на вывучэнні першасных і другасных арэолаў рассейвання ў карэнных рудазмяшчальных пародах, паверхневых адкладах і глебах. Гідрагеахім. метады пошукаў — выяўленне павышаных канцэнтрацый хім. элементаў у падземных водах. Біягеахім. метадамі даследуюцца арэолы, што ўтвараюцца ў раслінах шляхам міграцыі элементаў з радовішча праз падземныя воды і глебу, або пры кантакце каранёў раслін з рудным целам. Газагеахім. метады (газавая здымка) выяўляюць канцэнтрацыю лятучых злучэнняў у зоне гіпергенезу пераважна пры пошуках радовішчаў нафты і газу. Радыёметрычным метадам вымяраюць інтэнсіўнасць і даследуюць спектр гама-, бэта- і альфа-выпрамяненняў ядраў прыродных радыенуклідаў. Геахімічныя пошукі выкарыстоўваюцца на ўсіх стадыях геолагапошукавых работ — ад рэгіянальнай геал. здымкі да дэталёвай і эксплуатацыйнай разведкі радовішчаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕЙТРО́ННЫЯ БОЕПРЫПА́СЫ,
разнавіднасць ядз. боепрыпасаў з павышаным выхадам нейтроннага выпрамянення; зброя масавага знішчэння. Асн. частка энергіі Н.б. вылучаецца за кошт рэакцыі сінтэзу ядзер дэйтэрыю і трытыю; колькасць энергіі, што атрымліваецца ў выніку дзялення цяжкіх ядраў у дэтанатары, дастатковая для пачатку рэакцыі сінтэзу. Кампаненты (дэйтэрый і трытый) уваходзяць у састаў зарада ў выглядзе цвёрдага рэчыва (гідрыду металу) або знаходзяцца ў сціснутым газападобным стане. Пры выбуху Н.б. на ўтварэнне пранікальнай радыяцыі траціцца да 70% энергіі за кошт змяншэння затрат на інш. паражальныя фактары (ударная хваля, светлавое выпрамяненне і інш.). На аднолькавай адлегласці ад эпіцэнтра выбуху доза пранікальнай радыяцыі ў Н.б. у 5—10 разоў большая, чым у ядз. боепрыпасаў той жа магутнасці. Выкарыстоўваюцца ў артыл. снарадах, бомбах, баявых частках ракет і інш.Вытв-сць Н.б. пачалася ў ЗША і некаторых інш. краінах у пач. 1980-х г.
П.В.Сычоў, І.У.Мацвееў.
Да арт.Нейтронныя боепрыпасы. Схема нейтроннага снарада «пушачнага» тыпу: 1 — корпус з сістэмай утрымання плазмы ў зоне рэакцыі; 2 — сумесь дэйтэрыю і трытыю; 3 — адбівальнік нейтронаў; 4 — зарад плутонію 239; 5 — зарад выбуховага рэчыва; 6 — дэтанатар; 7 — крыніца нейтронаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БО́РА ТЭО́РЫЯ,
першая тэорыя атама і яго спектраў. Прапанавана Н.Борам у 1913 як аб’яднанне ідэі М.Планка аб квантаванні энергіі і планетарнай мадэлі атама Э.Рэзерфарда. Грунтуецца на двух пастулатах. Атамы могуць доўга знаходзіцца, не выпраменьваючы святла, ва ўстойлівых (стацыянарных) станах, адпаведных пэўным дыскрэтным (перарыўным) значэнням энергіі E1, E2, E3... (1-ы пастулат Бора). Выпрамяненне ці паглынанне святла адбываецца пры скачкападобных пераходах з аднаго стану ў другі паводле формулы , дзе hν — энергія святла частаты ν, што выпрамяняецца ці паглынаецца, h — Планка пастаянная (2-і пастулат Бора, ці ўмова частот).
Пастулаты Бора пацверджаны эксперыментальна і выконваюцца для ўсіх мікрасістэм (атамных ядраў, атамаў, малекул і інш.). Каб знайсці магчымыя значэнні энергіі і інш. характарыстыкі стацыянарных станаў атама, Бор разглядаў рух электронаў вакол ядра паводле законаў механікі Ньютана (класічнай механікі), пры дапаўняльных, т.зв. квантавых, умовах. Пры гэтым электрон у найпрасцейшым выпадку атама вадароду можа рухацца вакол ядра па кругавых ці эліптычных арбітах пэўных памераў, якія павялічваюцца з павелічэннем энергіі атама ў адпаведных стацыянарных станах. Канкрэтныя мадэльныя ўяўленні пра рух электрона ў атаме па строга вызначаных арбітах заменены ўяўленнямі квантавай механікі.
Літ.:
Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕЙТРО́ННАЯ О́ПТЫКА,
раздзел нейтроннай фізікі, які вывучае хвалевыя ўласцівасці нейтронаў і працэсы распаўсюджвання нейтронных хваль у рэчывах і палях.
У адпаведнасці з карпускулярна-хвалевым дуалізмам нейтрон можа паводзіць сябе як часціца з энергіяй E і імпульсам або як хваля з частатой
, даўжынёй хвалі λ = 2πh/p і хвалевым вектарам
, дзе h — Планка пастаянная. Хвалевыя ўласцівасці найб. выяўлены ў нейтронаў з малымі кінетычнымі энергіямі (гл.Павольныя нейтроны). Гэтымі ўласцівасцямі тлумачыцца пераламленне і адбіццё нейтронных пучкоў на мяжы падзелу двух асяроддзяў, поўнае адбіццё (пры пэўных умовах) ад мяжы падзелу, дыфракцыя на неаднароднасцях асяроддзя і на яго перыядычнай структуры. Для некаторых рэчываў пры адбіцці і пераламленні назіраецца палярызацыя нейтронаў, што вельмі падобна на ўзнікненне кругавой палярызацыі святла ў аптычна актыўных асяроддзях. У рэчывах, дзе спіны ядраў арыентаваны (палярызаваны) у адным напрамку, назіраецца ядз. прэцэсія нейтронаў, абумоўленая ядз. псеўдамагн. полем (гл.Ядзерная оптыка). Калі даўжыня хвалі нейтрона параўнальная з адлегласцю паміж атамамі (ядрамі) крышталёў, назіраецца дыфракцыя нейтронаў, аналагічная дыфракцыі рэнтгенаўскіх прамянёў.
На Беларусі даследаванні па асобных пытаннях Н.о. праводзяцца ў НДІядз. даследаванняў пры БДУ.
Літ.:
Крупчицкий П.А Фундаментальные исследования с поляризованными медленными нейтронами. М., 1985;
Барышевский В.Г. Ядерная оптика поляризованных сред. М., 1995.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
КАСМІ́ЧНЫЯ ПРАМЯНІ́,
патокі атамных ядраў і элементарных часціц у космасе і атмасферы. К.п. ў космасе наз. першаснымі (ПКП); прамяні, якія ўзнікаюць ад узаемадзеяння ПКП з рэчывам атмасферы ці міжзорнага газу, наз. другаснымі (ДКП).
У склад ПКП уваходзяць пратоны (92%), α-часціцы (7%), інш. ядры і электроны (1%). Большасць ПКП з энергіямі ад 1 да 108 ГэВ прыходзяць на Зямлю з Галактыкі і толькі невял. іх колькасць звязана з актыўнасцю Сонца. ПКП з энергіяй большай за 108 ГэВ, але меншай за 5∙1010 ГэВ, магчыма, прыходзяць з Метагалактыкі. Найб. верагодныя крыніцы галактычных ПКП — успышкі звышновых зорак і пульсары, якія пры гэтым утвараюцца. Поўная энергія, што пераносіцца ПКП на Зямлю, невял. і параўнальная з энергіяй бачнага святла зорак. Узаемадзеянне ПКП (большасць іх часціц зараджана дадатна) з магн. полем Зямлі выклікае шэраг т.зв. геамагнітных з’яў, напр., залежнасць інтэнсіўнасці К.п. з энергіяй ~1 ГэВ ад геамагнітнай шыраты і даўгаты. У склад ДКП уваходзяць усе вядомыя элементарныя часціцы. На ўзроўні мора ДКП падзяляюць на жорсткія (μ-мезоны) і мяккія (электроны, пазітроны і фатоны) кампаненты. Мяккія кампаненты ДКП разам з ядз. каскадам утвараюць шырокія атмасферныя ліўні (магутныя патокі другасных часціц), папярочнік якіх дасягае соцень метраў. К.П выкарыстоўваюцца для вывучэння працэсаў узаемадзеяння элементарных часціц і іх структуры, а таксама для выяўлення і вывучэння астрафіз. працэсаў, што адбываюцца ў нетрах Сусвету.