ГРАВІТАЦЫ́ЙНАЯ ПАСТАЯ́ННАЯ,

1) універсальная (кавендышава, ньютанава) гравітацыйная пастаянная — каэфіцыент прапарцыянальнасці ў законе прыцягнення Ньютана (гл. Сусветнага прыцягнення закон); адна з фундаментальных фіз. пастаянных. Абазначаецца G. Вызначана эксперыментальна Г.Кавендышам (1798) пры дапамозе круцільных вагаў. Характарызуе гравітацыйнае ўзаемадзеянне ўсіх матэрыяльных аб’ектаў (часціц і палёў) і разглядаецца як універсальная канстанта, нязменная ў часе і прасторы, незалежная ад фіз. і хім. уласцівасцей асяроддзя і гравітуючых мас. G = (6,67259 ±0,00085)·10​-11 Н·м²/кг2.

2) Гаўсава гравітацыйная пастаянная — велічыня k, звязаная з універсальнай гравітацыйнай пастаяннай суадносінамі G = k​2. Служыць для вызначэння астранамічнай адзінкі, у сістэме фундаментальных астранамічных пастаянных прынятая ў якасці адзінай асн. (умоўна нязменнай) пастаяннай (1976). Лікавае значэнне k = 0,01720209895 вызначана К.Гаўсам (1809) на аснове 3-га закона Кеплера (гл. Кеплера законы) для сістэмы Сонца—Зямля і зацверджана Міжнар. астранамічным саюзам у якасці абсалютна дакладнай канстанты (1938).

М.М.Касцюковіч.

т. 5, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛА́КТЫКА

(ад познагрэч. galaktikos малочны, млечны),

гіганцкая зорная сістэма, да якой належаць Сонца і ўся Сонечная сістэма разам з Зямлёй. У яе ўваходзяць не менш за 100 млрд. зорак (іх агульная маса каля 10​11 мас Сонца), міжзорнае рэчыва (газ і пыл, маса якіх каля 0,05 масы ўсіх зорак), касм. часціцы, эл.-магн. і гравітацыйнае поле.

Структура Галактыкі неаднародная. Адрозніваюць 3 асн. падсістэмы: сферычную (гала) — шаравыя скопішчы, чырвоныя гіганты, субкарлікі, пераменныя зоркі тыпу RR-Ліры, якія рухаюцца вакол цэнтра мас Галактыкі па выцягнутых арбітах у разнастайных напрамках і не ўдзельнічаюць у вярчэнні галактычнага дыска; прамежкавую (дыск) — большасць зорак галоўнай паслядоўнасці, у т. л. Сонца, зоркі-гіганты, белыя карлікі, планетарныя туманнасці; скорасць іх вярчэння мяняецца з адлегласцю ад цэнтра; узрост — некалькі млрд. гадоў; плоскую (тонкі дыск ці спіральныя рукавы) — маладыя зоркі, міжзорны газ і пыл, доўгаперыядычныя цэфеіды, пульсары, многія галактычныя крыніцы гама-, рэнтгенаўскага і інфрачырвонага выпрамянення; узрост гэтых зорак не большы за 100 млн. гадоў, яны не паспелі значна аддаліцца ад месцаў свайго нараджэння, таму спіральныя галіны Галактыкі лічаць месцам утварэння зорак. Цэнтральная вобласць Галактыкі (ядро) знаходзіцца ў напрамку сузор’я Стралец і заслонена ад зямнога назіральніка міжзорнымі воблакамі касм. пылу і газу. Памеры ядра Галактыкі больш за 1000 пк. Яно з’яўляецца крыніцай магутнага радыевыпрамянення, што сведчыць пра актыўныя працэсы, якія адбываюцца ў ім. Самая знешняя частка сферычнай падсістэмы — карона Галактыкі радыусам каля 70 кпк і масай, у 10 разоў большай за масу ўсёй астатняй Галактыкі. Сонца, знаходзіцца на адлегласці 8,5 кпк ад цэнтра, амаль дакладна ў плоскасці Галактыкі, і аддалена ад яе на Пн прыблізна на 25 кпк Скорасць вярчэння Сонца вакол цэнтра Галактыкі 230 км/с. Для зямнога назіральніка зоркі канцэнтруюцца ў напрамку плоскасці Галактыкі і зліваюцца ў бачную карціну Млечнага Шляху. Знаходжанне Сонца паблізу плоскасці Галактыкі ўскладняе даследаванне нашай зорнай сістэмы.

Літ.:

Марочник Л.С., Сучков А.А. Галактика. М., 1984;

Воронцов-Вельяминов Б.А. Очерки о Вселенной. 8 изд. М., 1980;

Климишин И.А. Открытие Вселенной. М., 1987.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДБЕ́ЛЬВАННЕ,

бяленне, тэхналагічны працэс выдалення дамешкаў і знішчэння непажаданай натуральнай афарбоўкі матэрыялаў (натуральных і штучных валокнаў, паперы, воску, скуры, футра, пластычных мас і інш.) для надання ім белага колеру ці перад фарбаваннем. Хімічнае адбельванне ўключае папярэднюю апрацоўку матэрыялу хлорамінам, слабымі растворамі кіслот і шчолачаў або ферментатыўнымі прэпаратамі і наступнае ўздзеянне акісляльнікаў (гіпахларыту натрыю ці кальцыю, пераксіду вадароду, хларыту натрыю, перманганату калію) ці аднаўляльнікаў (сярністага газу, гідрасульфіту ці бісульфіту натрыю). Аптычнае адбельванне заснавана на дзеянні бясколерных флуарэсцыруючых арган. рэчываў — белафораў (вытворных стыльбену, аксазолу, імідазолу), якія ператвараюць УФ-выпрамяненне дзённага (сонечнага) святла ў сіне-фіялетавы колер бачнага святла і такім чынам кампенсуюць паглынанне святла забруджваннямі. Матэрыялы пры гэтым набываюць высокую ступень белізны, фарбаваныя — яркасць і кантрастнасць. Фатаграфічнае адбельванне — прамежкавая стадыя апрацоўкі каляровых і чорна-белых кіна- і фатаграфічных матэрыялаў, у выніку якой адбываецца акісленне метал. серабра відарыса акісляльнікамі (чырв. крывяная соль, біхрамат калію і інш.) у злучэнні белага колеру, што выдаляюцца пры далейшай апрацоўцы.

т. 1, с. 96

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫШЫ́ННАЯ ПО́ЯСНАСЦЬ,

вертыкальная занальнасць, заканамерная змена ландшафтаў у гарах. Абумоўлена пераважна зменай клімату з вышынёй: паніжэннем т-ры паветра (у сярэднім на 6 °C на кожныя 1000 м вышыні), яго шчыльнасці, ціску, колькасці ў ім пылу, павелічэннем інтэнсіўнасці сонечнай радыяцыі, а таксама (да выш. 2—3 км) воблачнасці і гадавой колькасці ападкаў. Са зменамі клімату цесна звязаны змены геамарфалагічных, гідралагічных, глебаўтваральных працэсаў, характар расліннага і жывёльнага свету. У выніку ўтвараюцца вышынныя паясы. Многія асаблівасці вышыннай пояснасці залежаць ад экспазіцыі схілаў, іх размяшчэння адносна пануючых паветр. мас і аддаленасці ад акіянаў.

Колькасць паясоў звычайна павялічваецца ў высокіх гарах і з набліжэннем да экватара. Вылучаюць у асн. 3 тыпы вышынных паясоў: акіянскі, ці прыморскі (характарызуецца развіццём пояса дрэвавай расліннасці ад падножжа), кантынентальны (дрэвава-хмызняковыя фармацыі на пэўнай вышыні) і ультракантынентальны (пояс дрэвавай расліннасці прадстаўлены фрагментарна). Вышынны пояс пачынаецца з той прыроднай зоны, на якую апіраецца падножжа горнага ланцуга. Заканамернасці вышынных паясоў распрацаваны ням. географам К.Гумбальтам (19 ст.) і рус. даследчыкам В.В.Дакучаевым (канец 19 ст.).

А.М.Матузка.

т. 4, с. 330

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШГАЛА́КТЫКА, звышскопішча галактык,

гіганцкая сукупнасць зорных сістэм. Складаецца з асобных галактык, іх груп і скопішчаў. Памеры 50—150 Мпс, маса 10​15—10​16 мас Сонца. Форма пляскатая (напр., Лакальная З.) або моцна выцягнутая, накшталт ланцужка (напр., З. Персея). Узніклі з прычыны адыябатычных узбурэнняў шчыльнасці рэчыва на пачатковай стадыі расшырэння гарачай Метагалактыкі. Некаторыя З. расшыраюцца, іншыя сціскаюцца. Выяўлена іх каля 50.

Наша Галактыка, Магеланавы Воблакі, галактыкі ў Трыкутніку, Андрамедзе з яе спадарожнікамі і амаль усе галактыкі, бачныя як аб’екты да 13-й зорнай велічыні, уваходзяць у Лакальную З. Яе цэнтр. згушчэнне — буйное скопішча галактык у сузор’і Дзевы (да 500 вял. галактык). Наша Галактыка знаходзіцца бліжэй да перыферыі З., таму галактыкі, што яе акружаюць, утвараюць на нябеснай сферы шырокі пояс («Млечны Шлях галактык»), амаль перпендыкулярны да зорнага Млечнага Шляху. У сузор’ях Льва і Геркулеса знаходзяцца іншыя з больш блізкіх З.

Літ.:

>Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М., 1975;

Агекян Т.А Звезды, галактики, Метагалактика. 3 изд. М., 1981.

Н.А.Ушакова.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАВІТАЦЫ́ЙНАЕ ЎЗАЕМАДЗЕ́ЯННЕ,

адзін з тыпаў фундаментальных узаемадзеянняў (разам з моцным, эл.-магн. і слабым), які характарызуецца ўдзелам у працэсах узаемадзеяння гравітацыйнага поля (поля прыцягнення). У адрозненне ад іншых узаемадзеянняў мае універсальны характар: гравітацыйнае ўзаемадзеянне ў аднолькавай ступені ўласціва ўсім матэрыяльным аб’ектам — ад элементарных часціц да зорак і галактык.

У гравітацыйным узаемадзеянні ўдзельнічаюць усе класы элементарных часціц (напр., фатон, лептоны, адроны). З-за іх малых мас гравітацыйнае ўзаемадзеянне з’яўляецца самым слабым з усіх тыпаў узаемадзеянняў элементарных часціц і ў тэорыі элементарных часціц звычайна не ўлічваецца. Гравітацыйнае ўзаемадзеянне можа стаць істотным пры ўліку эфектаў квантавай тэорыі гравітацыі, паводле якой гравітацыйнае ўзаемадзеянне тлумачыцца як вынік абмену квантамі гравітацыйнага поля — гравітонамі. Гравітацыйнае ўзаемадзеянне мае бясконца вял. радыус дзеяння і адыгрывае важную ролю ў макрасвеце, з’яўляючыся асн. фактарам узаемадзеяння і эвалюцыі планет, зорак, галактык і самога Сусвету. Для дастаткова слабых гравітацыйных палёў выконваецца сусветнага прыцягнення закон. Гравітацыйныя эфекты, рух цел і эвалюцыя астрафіз. аб’ектаў у моцных палях прыцягнення падпарадкоўваюцца законам агульнай адноснасці тэорыі. Гл. таксама Прыцягненне.

М.М.Касцюковіч.

т. 5, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБЭЦЭДА́РСКІ (Абецадарскі) Лаўрэнцій Сямёнавіч

(12.7.1916, г. Горкі Магілёўскай вобл. — 6.7.1975),

бел. гісторык. Д-р гіст. н., праф. (1966). Чл.-кар. АПН СССР (1968). Скончыў БДУ (1946), працаваў там выкладчыкам, заг. кафедры гісторыі СССР (1950—58), гісторыі БССР (з 1958). Вывучаў рус.-бел. адносіны ў 2-й пал. 16—17 ст., нац.-вызв. і антыфеад. барацьбу нар. мас Беларусі ў 17 ст. Пачатковы перыяд гісторыі Беларусі разглядаў як агульны этап гісторыі старажытнай Русі, асобныя факты і падзеі ацэньваў з вульгарна-сацыялагічных пазіцый. Сабраў вялікі матэрыял пра перасяленне беларусаў у Маскву і Замаскварэцкі край у 2-й пал. 17 ст., якое не заўсёды абгрунтавана лічыў добраахвотным. Звярнуў увагу на значны бел. элемент у развіцці культуры Масквы ў 2-й пал. 17 ст. Прыхільнік унітарнай канцэпцыі аб’яднання ўсходнеславянскіх народаў вакол Масквы і Маскоўскай дзяржавы. Адзін з аўтараў «Гісторыі Беларускай ССР» (т. 1—2, 1954—61; т. 1—5, 1972—75).

Тв.:

Белорусы в Москве XVII в.: Из истории рус.-бел. связей. Мн., 1957;

Белоруссия и Россия: Очерки рус.-бел. связей второй половины XVI—XVII в. Мн., 1978.

Л.С.Абэцэдарскі.

т. 1, с. 54

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ХІ́МІЯ,

навука аб прынцыпах і метадах вывучэння саставу рэчываў. Уключае тэарэт. асновы хім. аналізу, метады вызначэння кампанентаў у рэчывах ці матэрыялах, сістэм. аналіз канкрэтных аб’ектаў. Тэарэт. асновы аналітычнай хіміі — метралогія хім. Аналізу (апрацоўка вынікаў); вучэнне аб адборы і падрыхтоўцы аналітычных проб, складанні схемы і выбары метадаў, прынцыпах і шляхах аўтаматызацыі аналізу. Аналітычная хімія звязана з дасягненнямі фізікі, матэматыкі, біялогіі, розных галін тэхнікі. Асаблівасць аналітычнай хіміі — вывучэнне індывід. спецыфічных уласцівасцяў і характарыстык аб’ектаў. У залежнасці ад мэты аналізу адрозніваюць якасны аналіз і колькасны аналіз; у залежнасці ад кампанентаў, якія неабходна выявіць — ізатопны аналіз, элементны аналіз, структурна-групавы (у т. л. функцыянальны аналіз), малекулярны і фазавы аналіз; у залежнасці ад прыроды рэчыва — аналіз арган. і неарган. рэчываў. Вызначэнне рэчыва ці кампанента праводзяць хімічнымі (гравіметрычны аналіз, цітрыметрычны аналіз), фізіка-хімічнымі (электрахім., фотаметрычны аналіз, кінетычныя метады аналізу), фізічнымі (спектральныя, ядзерна-фіз. і інш.) і біял. метадамі аналізу. Практычна ўсе метады аналітычнай хіміі заснаваны на залежнасці ўласцівасцяў аб’ектаў, якія можна мераць (маса, аб’ём, святлопаглынанне, эл. ток і інш.), ад іх саставу.

Заснавальнікам аналітычнай хіміі як навукі лічыцца Р.Бойль, які ўвёў паняцце «хімічны аналіз». Класічная аналітычная хімія (17—18 ст.) выкарыстоўвала пераважна гравіметрычны і цітрыметрычны метады аналізу. Да 1-й пал. 19 ст. адкрыты многія хім. элементы, выдзелены састаўныя часткі некаторых прыродных рэчываў, устаноўлены пастаянства саставу закон, кратных адносін закон, масы захавання закон. Распрацаваны сістэматычны аналіз (ням. хімікі Г.Розе, К.Фрэзеніус і рус. хімік М.А.Мяншуткін), створаны цітрыметрычны аналіз арган. злучэнняў (ням. хімік Ю.Лібіх). У канцы 19 ст. складалася тэорыя аналітычнай хіміі, заснаваная на вучэнні аб хім. раўнавазе ў растворах з удзелам іонаў (у асн. В.Оствальд). У 20 ст. з’явіліся метады мікрааналізу арган. злучэнняў (аўстр. хімік Ф.Прэгль), паляраграфіі (чэшскі хімік Я.Гейраўскі), рус. біяхімікам М.С.Цветам адкрыты метад храматаграфіі (1903) і створаны яго варыянты. Развіццё сучаснай аналітычнай хіміі звязана са з’яўленнем мноства фізіка-хім. і фіз. метадаў аналізу (мас-спектраметрычны, рэнтгенаўскі, ядзерна-фізічныя). Прапанаваны плазмавыя крыніцы току для атамна-эмісійнага аналізу, распрацаваны метады фотаметрычнага аналізу, атамна-адсарбцыйнай спектраскапіі. У сувязі з неабходнасцю аналізу ядз., паўправадніковых і інш. матэрыялаў высокай чысціні створаны радыеактывацыйны аналіз, хіміка-спектральны, іскравая мас-спектраметрыя, вольтамперметрыя — метады, што дазваляюць вызначыць дамешкі ў чыстых рэчывах з канцэнтрацыяй да 10​-7—10​-8%. Распрацаваны метады неперарыўнага і дыстанцыйнага аналізу. Перавага аддаецца метадам неразбуральнага кантролю, лакальнага аналізу (рэнтгенаспектральны мікрааналіз, мас-спектраметрыя другасных іонаў і інш.). Лакальным аналізам карыстаюцца пры аналізе паверхневых слаёў цвёрдых матэрыялаў ці ўключэнняў горных парод.

Сучасная аналітычная хімія карыстаецца аўтам. ці аўтаматызаванымі варыянтамі вызначэння рэчываў. Метады аналітычнай хіміі дазваляюць кантраляваць тэхнал. працэсы і якасць прадукцыі ў многіх галінах вытв-сці, праводзіць пошук і разведку карысных выкапняў. Аналітычная хімія садзейнічала развіццю ат. энергетыкі, электронікі, акіяналогіі, біялогіі, медыцыны, крыміналістыкі, археалогіі, касм. даследаванняў. На Беларусі сістэм. даследаванні па аналітычнай хіміі пачаліся ў 1935 у БДУ і вядуцца ў ін-тах фіз., хім. і геал. профілю АН, у ВНУ і ведамасных н.-д. установах. Распрацаваны шэраг храматаграфічных метадаў, выдзялення з сумесяў і вызначэння іонаў, комплексаў металаў, алкалоідаў і інш. рэчываў (пад кіраўніцтвам Р.Л.Старобінца); хім. метадаў вызначэння металаў (В.Р.Скараход); даследаваны ўплыў экстракцыйных працэсаў розных тыпаў на функцыянаванне вадкасных і плёначных іонаселектыўных электродаў на аснове вышэйшых чацвярцічных амоніевых соляў (Я.М.Рахманько) і сульфакіслот (У.У.Ягораў). Распрацаваны і ўкаранёны: аніён- і катыёнселектыўныя электроды; нітратамер і іонамер; методыкі вызначэння нітратаў, свінцу, кадмію, вісмуту, ртуці, цынку, алкалоідаў, алкілсульфатаў і інш., газахраматаграфічнага вызначэння фенолаў, пестыцыдаў у вадзе, прадуктах харчавання; экстракцыйна-спектральныя і храматаграфічныя метады аналізу с.-г. аб’ектаў; метады аналізу паўправадніковых матэрыялаў, сплаваў, плёнак, ферытаў.

Літ.:

Золотов Ю.А. Аналитическая химия: Проблемы и достижения. М., 1992.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНАЯ ТЭ́ХНІКА,

галіна навукі і тэхнікі, звязаная з вывучэннем, вырабам і выкарыстаннем сродкаў вымярэнняў. Грунтуецца на навук. дысцыплінах, якія вывучаюць метады і сродкі атрымання колькаснай інфармацыі аб велічынях, што характарызуюць аб’екты і вытв. працэсы. Уключае вымяральныя прылады, інструменты, машыны і ўстаноўкі, прызначаныя для рэгістрацыі вынікаў вымярэння. Звязана з вылічальнай тэхнікай, кібернетыкай тэхнічнай, тэлемеханікай, электронікай, аўтаматыкай і інш.

Вымяральная тэхніка ўзнікла ў глыбокай старажытнасці і была звязана з вымярэннем мас і аб’ёмаў, адлегласцей і плошчаў, адрэзкаў часу, вуглоў і г.д. Да 16—18 ст. адносіцца ўдасканаленне гадзіннікаў і вагаў, вынаходства мікраскопа, барометра, тэрмометра. У канцы 18 — 1-й пал. 19 ст. з пашырэннем паравых рухавікоў і развіццём машынабудавання развіваецца прамысл. вымяральная тэхніка: удасканальваюцца прылады для вызначэння памераў, з’яўляюцца вымяральныя машыны, уводзяцца калібры, розныя меры фіз. велічынь (у т. л. эталоны) і г.д. У 19 ст. створаны асновы тэорыі вымяральнай тэхнікі і метралогіі, пашырылася метрычная сістэма мер, з’явіліся электравымяральныя прылады і цеплатэхнічныя прылады. У 20 ст. пачынаюць выкарыстоўвацца эл. і электронныя сродкі для вымярэння мех., цеплавых, аптычных і інш. велічынь, для хім. аналізу і геолагаразведкі, развіваюцца радыёвымярэнні і спектраметрыя, узнікае прыладабуд. прам-сць. Гал. кірункі развіцця сучаснай вымяральнай тэхнікі: лінейныя і вуглавыя вымярэнні; мех., аптычныя, акустычныя, цеплафіз., фіз.-хім. вымярэнні; эл., магн. і радыёвымярэнні; вымярэнні частаты і часу, выпрамяненняў (гл., напр., Арэометр, Асцылограф, Вакуумметр, Вісказіметр, Вымяральны пераўтваральнік, Газааналізатар, Геадэзічныя прылады і інструменты, Дазіметрычныя прылады, Інтэрферометр, Каларыметр, Люксметр, Манометр, Пнеўматычны пераўтваральнік, Радыёвымяральныя прылады, Спектрометр, Частатамер).

Шырока выкарыстоўваюцца (пераважна ў машынабудаванні) вымяральныя інструменты: універсальныя (для вымярэння дыяпазонаў памераў) і бясшкальныя (для вымярэння аднаго пэўнага памеру). Універсальныя падзяляюцца на штрыхавыя (штанген-інструменты, вугламеры, лінейкі, вугольнікі, кронцыркулі), мікраметрычныя (глыбінямеры, мікрометры, нутрамеры), механічныя з рознымі тыпамі мех. перадач (індыкатары гадзіннікавага тыпу, мініметры, мікатары), оптыка-механічныя (праектары, вымяральныя мікраскопы) і інш. Многія прылады далучаюць розныя канструкцыйныя асаблівасці, напр. аптыметры (рычажна-аптычная сістэма). Бясшкальныя інструменты — сродкі допускавага кантролю; гэта калібры (кольцы, шаблоны, коркі, скобы) і канцавыя меры (стальныя пліткі пэўнай таўшчыні ў наборах). Адным з гал. кірункаў далейшага развіцця вымяральнай тэхнікі з’яўляецца распрацоўка інфарм.-вымяральных сістэм. Удасканальваюцца сродкі дылатаметрыі, дазіметрыі, мас-спектраметрыі, рэфрактаметрыі, тэлеметрыі. Тэарэт. і навук.-практычную аснову ўдасканалення вымяральнай тэхнікі як аднаго з кірункаў прыладабудавання складаюць дасягненні і распрацоўкі ў галіне фіз тэхн. навук. На Беларусі сродкі вымяральнай тэхнікі выпускаюць Гомельскі завод вымяральных прылад, Віцебскае вытворчае аб’яднанне «Электравымяральнік» і інш.

А.Р.Архіпенка, У.М.Сацута.

т. 4, с. 314

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВОГНЕТРЫВА́ЛЫЯ МАТЭРЫЯ́ЛЫ,

матэрыялы і вырабы, устойлівыя да ўздзеяння высокай (больш за 1580 °C) т-ры. Падзяляюцца на ўласна вогнетрывалыя (з вогнетрываласцю 1580—1770 °C; дынасавыя, кварцавыя, шамотавыя, паўкіслыя вогнетрывалыя матэрыялы), высокавогнетрывалыя (1770—2000 °C; высокагліназёмістыя, даламітавыя, карбарундавыя, форстэрытавыя, храмітавыя) і найвышэйшай вогнетрываласці (больш за 2000 °C; магнезітавыя, шпінельныя, цырконіевыя, коксавыя, графітавыя, з чыстых вокіслаў і інш.).

Вогнетрывалыя матэрыялы бываюць: рознай шчыльнасці, у т. л. легкаважныя (цеплаізаляцыйныя); з пластычных (маюць гліны) і непластычных мас; абпальныя, безабпальныя, плаўленыя, выпілаваныя з горных парод; фармаваныя (фасонная і звычайная цэгла, трубы, пліты) і нефармаваныя (парашкі, растворы, абмазкі, бетоны). Выкарыстоўваюцца для муроўкі металургічных, шклаварных і інш. пячэй, топак, цеплавых агрэгатаў. З іх робяць тыглі, рэторты, дэталі шклоразлівачных каўшоў і інш. Найб. пашыраны ў прам-сці шамотныя вогнетрывалыя матэрыялы, іх атрымліваюць з вогнетрывалай гліны (радовішчы ў Беларусі) і кааліну. Вогнетрывалыя матэрыялы з бескіслародных злучэнняў і чыстых вокіслаў атрымліваюць метадам парашковай металургіі (канчатковая аперацыя — спяканне). Тэхналогія вытв-сці керамічных вогнетрывалых матэрыялаў уключае абпальванне мінер. сыравіны, памол, дабаўку клейкіх рэчываў (гліны, вадкага шкла, вапны, смалы), фармаванне, абпальванне вырабаў. Вогнетрывалыя вырабы выпускае Мінскі фарфоравы з-д. Гл. таксама Вогнетрывалых матэрыялаў прамысловасць.

т. 4, с. 247

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)