АНІГІЛЯ́ЦЫЯ

(ад лац. annihilatio знішчэнне, знікненне),

працэс узаемадзеяння элементарнай часціцы з яе антычасціцай, у выніку якога яны ператвараюцца ў інш. элементарныя часціцы. Адбываецца ў адпаведнасці з захавання законамі. Анігіляцыя электронна-пазітроннай пары (e​- — e​+) у 2 або 3 фатоны і адваротны працэс нараджэння яе фатонамі былі прадказаны англ. фізікам П.Дзіракам (1931), выяўлены эксперыментальна франц. фізікамі І. і Ф.Жаліо-Кюры (1933) і дакладна апісаны ў квантавай электрадынаміцы. У фізіцы высокіх энергій анігіляцыя — адзін з імаверных каналаў (прамежкавых стадый) працэсаў узаемадзеяння часціцы з антычасціцай, што ажыццяўляецца за кошт электрамагн., слабага і моцнага ўзаемадзеянняў. Напр., пры сутыкненнях высокаэнергет. (e​- — e​+) пучкоў акрамя анігіляцыі ў фатоны магчымы пругкае і няпругкае рассеянне, ператварэнне ў інш. пары (μ​- — μ​+, ν — ν̃, π — π​+ і г.д.), утварэнне звязаных недаўгавечных сістэм (пазітроній, кварконій і інш.) або абсалютна нейтральных часціц (γ, p, η​0 → ), а ў канчатковым выніку — множнае нараджэнне часціц, пераважна адронаў. Сучасныя паскаральнікі на сустрэчных пучках даюць магчымасць атрымаць усе вядомыя элементарныя часціцы, у т. л. самыя масіўныя, напр. слабыя базоны w​(-), w​(+), z​(0).

Літ.:

Богуш А.А. Очерки по истории физики микромира. Мн., 1990.

А.А.Богуш.

т. 1, с. 367

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЬФРА́МАВЫЯ СПЛА́ВЫ , сплавы на аснове вальфраму. Асн. ўласцівасці вальфрамавых сплаваў — высокія т-ры плаўлення і рэкрышталізацыі, гарачатрываласць. У якасці дадаткаў выкарыстоўваюць металы (малібдэн Mo, рэній Re, медзь Cu, нікель Ni, серабро Ag), аксіды торыю, крэмнію, карбіды танталу, цырконію і інш. злучэнні, якія паляпшаюць пластычнасць, тэхнал. і фіз. ўласцівасці чыстага вальфраму.

Атрымліваюць вальфрамавыя сплавы вакуумнай (дугавой ці электронна-прамянёвай) плаўкай, метадамі парашковай металургіі. Выкарыстоўваюцца ў авіябудаванні і касм. тэхніцы сплавы з Mo (15%), для вытв-сці тэрмапар да 2000 °C сплавы з Re (20 і 5%), зносаўстойлівых кантактаў, электродаў для кантактнай зваркі сплавы з Cu ці Ag (12—30%), як экраны для аховы ў радыетэрапіі сплавы з Ni (3—7%) і Cu (2—5%). Сплавы, легіраваныя аксідамі, выкарыстоўваюцца як матэрыялы катодаў для электронных і электратэхн. прылад і ніцяў лямпаў напальвання. Да вальфрамавых сплаваў адносяць таксама сплавы на аснове інш. металаў (напр., жалеза Fe), якія маюць вальфрам. На аснове Fe атрымліваюць феравальфрам (70—72% W і 1,5—6% Мо) для легіравання вальфрамавых сталяў: канструкцыйнай (да 0,6% W), гарачатрывалай, інструментальнай (да 18% W).

Г.Г.Паніч.

т. 3, с. 494

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МА-ВЫПРАМЯНЕ́ННЕ

(γ-выпрамяненне),

караткахвалевае эл.-магн. выпрамяненне з даўжынёй хвалі, меншай за 2·10​-10 м. Узнікае пры распадзе радыеактыўных ядраў (гл. Радыеактыўнасць), тармажэнні хуткіх зараджаных часціц у рэчыве (гл. Тармазное выпрамяненне), сінхратронным выпрамяненні, а таксама пры анігіляцыі электронна-пазітронных пар і ў інш. ядз. рэакцыях. З прычыны кароткай даўжыні хвалі ў гама-выпрамяненні выразныя карпускулярныя ўласцівасці (гл. Комптана эфект, Фотаэфект), хвалевыя (дыфракцыя, інтэрферэнцыя) выражаны слаба.

Асн. характарыстыка гама-выпрамянення — энергія асобнага γ-кванта Eγ =hν, дзе h — Планка пастаянная, ν — частата выпрамянення. Пры пераходзе ядра атама з узбуджанага стану з энергіяй Ei у больш нізкі энергет. стан Ek выпрамяняецца γ-квант з энергіяй Eγ = Ei = Ek Eγ = Ei — Ek. У выніку гэтага гама-выпрамянення ядраў мае лінейчасты спектр. Натуральныя радыеактыўныя крыніцы даюць гама-выпрамяненню з энергіяй да некалькіх мегаэлектронвольтаў (МэВ), у ядз. рэакцыях атрымліваюцца γ-кванты з энергіяй да дзесяткаў Мэв, а пры тармазным выпрамяненні — да соцень Мэв і больш. Гама-выпрамяненне — адно з найбольш пранікальных выпрамяненняў (пранікальнасць залежыць ад энергіі γ-квантаў і шчыльнасці рэчыва).

Гама-выпрамяненне выкарыстоўваецца для выяўлення дэфектаў у вырабах і дэталях (гл. Дэфектаскапія), экспрэснага колькаснага вызначэння волава ў рудах, стэрылізацыі харч. прадуктаў, гаматэрапіі злаякасных пухлін і інш.

А.І.Болсун.

т. 5, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСЦЫЛО́ГРАФ

(ад лац. oscillum ваганне + ...граф),

вымяральная прылада для графічнага назірання і запісу функцыянальных сувязяў паміж эл. велічынямі, што характарызуюць які-н. фізічны працэс. З дапамогай асцылографа вызначаюць змены сілы току і напружання ў часе, вымяраюць частату, зрух фазаў, характарыстыкі электравакуумных і паўправадніковых прылад, а з дапамогай спец. датчыкаў (напр., тэрмапары) неэл. велічыні: т-ру, ціск, паскарэнне і інш. Асцылографы бываюць нізка- (да 1 МГц) і высокачастотныя (да 100 МГц і вышэй), адна- і многапрамянёвыя, імпульсныя, запамінальныя, спец. тэлевізійныя і інш.

Святлопрамянёвы асцылограф складаецца з люстранага гальванометра (шлейфа), святлоаптычнай сістэмы і прыстасаванняў для працягвання святлоадчувальнага носьбіта запісу (напр., фотапаперы) і непасрэднага назірання, вызначальніка часу. Бывае з фатаграфічным, электраграфічным, ультрафіялетавым і камбінаваным запісам адхілення светлавога праменя, адбітага ад шлейфа, скорасць працягвання носьбіта запісу да 5000 мм/с. Можна адначасова даследаваць да 64 розных працэсаў, напрыклад пры вывучэнні вібрацый і дэфармацый у самалётах, турбінах. Электроннапрамянёвы асцылограф прызначаны для непасрэднага назірання і фатаграфавання эл. працэсаў на экране электронна-прамянёвай трубкі (ЭПТ). Сігнал падаецца на вертыкальна адхіляльныя пласціны (шпулі) ЭПТ, напружанне разгорткі пры назіранні часавай залежнасці — на гарызантальна адхіляльныя.

Літ.:

Аршвила С.В., Борисевич Е.С., Жилевич И.И. Электрографические светолучевые осциллографы. М., 1978;

Линт Г.Э. Автоматические осциллографы при измерениях. М., 1972.

П.С.Габец.

т. 2, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕТЭРАПЕРАХО́Д,

кантакт паміж двума рознымі паводле хім. саставу ці (і) фазавага стану паўправаднікамі (ПП). Па тыпе праводнасці спалучаных ПП адрозніваюць гетэрапераходы анізатыпныя — кантактуюць ПП з электроннай (n) і дзірачнай (p) эл.-праводнасцямі (p-n-гетэрапераход; гл. Электронна-дзірачны пераход), і ізатыпныя — кантактуюць ПП з адным тыпам праводнасці (n-n-гетэрапераход ці p-p-гетэрапераход). Камбінацыі некалькіх гетэрапераходаў утвараюць гетэраструктуры.

Для атрымання гетэрапераходу выкарыстоўваюцца кантакты паміж германіем Ge, крэмніем Si, ПП злучэннямі тыпу A​IIIB​V, дзе A​III — элемент III групы перыяд. сістэмы элементаў (алюміній Al, галій Ga, індый In), B​V — элемент V групы (фосфар P, мыш’як As, сурма Sb), і іх цвёрдымі растворамі: Ge—Si, Ga Al As — Ga As, Ga Al—Ge, In Ga As — In P. Гетэрапераход атрымліваюць эпітаксіяй. Галоўная асаблівасць гетэрапераходу — скачкападобнае змяненне ўласцівасцей на мяжы падзелу ПП (шырыні забароненай зоны, энергіі роднасці да электрона, рухомасці носьбітаў зараду, іх эфектыўнай масы і інш.). Кіраванне імі шляхам падбору спалучаных ПП матэрыялаў дае магчымасць ствараць арыгінальныя ПП прылады. Гетэрапераходы выкарыстоўваюцца ў пераключальніках хуткадзейных лагічных схем для ЭВМ, ПП лазерах, святлодыёдах і інш.

Літ.:

Милис А., Фойхт Д. Гетеропереходы и переходы металл — полупроводник: Пер. с англ. М., 1975;

Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы: Пер. с англ. М., 1979.

Л.М.Шахлевіч.

т. 5, с. 209

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВРО́ЦЛАЎ

(Wrocław),

горад на ПдЗ Польшчы, на р. Одра. Адм. ц. Вроцлаўскага ваяводства. Гал. прамысл. і культ. цэнтр прыроднай вобласці Сілезія (Шлёнск). 642,3 тыс. ж. (1993). Вузел аўтадарог і 9 чыгунак. Порт на р. Одра. Аэрапорт. Машынабудаванне (эл.-тэхн., радыёэлектроннае, электравоза-, вагона-, станка- і прыладабудаванне, электронна-выліч. машыны, вырабы дакладнай механікі, судны), хім., харч., швейная, тэкст., дрэваапр., паліграф. прам-сць. Філіял АН. 8 ВНУ (у т. л. ун-т). Т-ры (у т. л. оперны). Бат. сад.

Упершыню ўпамінаецца ў 980. З 1000 цэнтр епіскапства, з 1163 рэзідэнцыя сілезскіх Пястаў, буйны гандл. цэнтр. У 1261 атрымаў магдэбургскае права. У 1264—1335 цэнтр Вроцлаўскага княства. З 1335 у складзе Чэшскага каралеўства (наз. Враціслаў), з 1526 пад уладай Габсбургаў. У 1742 захоплены Прусіяй (ням. назва Брэслаў). У 1848 Вроцлаў — адзін з цэнтраў рэв. руху. У канцы 19 — пач. 20 ст. значна германізаваны. У 2-ю сусв. вайну разбураны, каля Вроцлава фашысты зрабілі 5 філіялаў канцлагера Грос-Розен. Паводле рашэнняў Патсдамскай канферэнцыі 1945 перададзены Польшчы.

Старыя раёны горада размешчаны на берагах і астравах р. Одра (Одэр), тут знаходзяцца цэнтр. пл. Рынак, кляштар і касцёл Дзевы Марыі (12—14 ст.), касцёлы Іаана Хрысціцеля (13—15 ст.), Марыі Магдалены (14 ст., раманскі паўд. партал 12 ст.), св. Войцеха (13—15 ст.), ратуша (2-я пал. 13 ст. — 1504), жылыя дамы 14—17 ст., езуіцкі калегіум (1726—32, цяпер ун-т) і б-ка фонду імя Асалінскіх (1676—1715) у стылі барока, «Зала стагоддзя» (ням. арх. М.Берг, 1911 – 13; цяпер «Народны дом») са смелай наватарскай канструкцыяй агромністага купала (яго жалезабетонныя рэбры апіраюцца на кальцо, якое падтрымліваюць 4 сегментныя аркі і рэбры). Адноўлены разбураныя ў 2-ю сусв. вайну арх. Помнікі, збудаваны комплекс Выстаўкі ўз’яднаных зямель (з 1948), «Школа тысячагоддзя» (1960) і інш., жылыя дамы ў раёне Гаявіцы, на пл. Грунвальда і інш. Музеі: Сілезскі і архітэктуры.

В.У.Адзярыха (гісторыя).

т. 4, с. 283

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БА́РЫЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць барый, пераважна ў ступені акіслення +2. Найб. пашыраны аксід, гідраксід барыю, солі барыю (сульфат, хларыд, карбанат, нітрат і інш.). Бясколерныя крышт. рэчывы, ядавітыя, ГДК амаль усіх барыю злучэнняў 0,5 мг/м³. Сыравінай у вытв-сці барыю злучэнняў з’яўляецца барытавы канцэнтрат (80—95% сульфату барыю), які атрымліваюць флатацыяй барыту.

Барыю аксід BaO, tпл 2017 °C, пры награванні ўзганяецца, шчыльн. 5,7·103 кг/м³. З вадой утварае гідраксід барыю, з кіслотамі, дыяксідам вугляроду — солі. Выкарыстоўваюць у вытв-сці шкла, эмаляў, каталізатараў. Пры награванні ў кіслародзе (500 °C) пераходзіць у пераксід барыю BaO2 — кампанент піратэхн. сумесяў, адбельвальнікаў для тканін і паперы. Барыю гідраксід Ba(OH)2, tпл 408 °C, гіграскапічны, насычаны раствор у вадзе наз. барытавай вадой; моцная аснова. Выкарыстоўваецца як паглынальнік дыяксіду вугляроду, для ачысткі алеяў і тлушчаў, кампанент змазак, аналітычны рэагент на сульфат- і карбанат-іоны. Барыю сульфат BaSO4, tпл 1580 °C, шчыльн. 4,5·103 кг/м³, не раствараецца ў вадзе і разбаўленых кіслотах, паглынае рэнтгенаўскае выпрамяненне. Напаўняльнік гумы і паперы (у тым ліку фотапаперы), кардону, кампанент белых мінер. фарбаў, кантрастнае рэчыва ў рэнтгенаскапічных даследаваннях страўнікава-кішачнага тракту (ГДК 6 мг/м³). Барыю карбанат BaCO3, tпл 1555 °C (у атмасферы CO2 пад ціскам 45 МПа), шчыльн. 4,25·103 кг/м³. Дрэнна раствараецца ў вадзе, рэагуе з разбаўленымі салянай і азотнай кіслотамі. Трапляецца ў прыродзе як мінерал вітэрыт. Выкарыстоўваюць у вытв-сці катодаў у электронна-вакуумных прыстасаваннях, аптычнага шкла, эмаляў, палівы, керамічных матэрыялаў, ферытаў, чырв. цэглы. Барыю хларыд BaCl2, tпл 961 °C, шчыльн. 3,83·103 кг/м³, раствараецца ў вадзе. Выкарыстоўваецца ў гарбарнай прам-сці для ўцяжарвання і асвятлення скуры, для барацьбы са шкоднікамі ў сельскай гаспадарцы, загартоўкі «хуткарэзнай» сталі. Барыю нітрат Ba(NO3)2. Існуе як мінерал нітрабарыт, выкарыстоўваецца ў эмалях і паліве, піратэхніцы. Барыю тытанат BaTiO3сегнетаэлектрык. Барыю храмат BaCrO4 і манганат BaMnO4 — адпаведна жоўты і зялёны пігменты.

Літ.:

Ахметов Т.Г. Химия и технология соединений бария. М., 1974.

Л.М.Скрыпнічэнка.

т. 2, с. 336

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВА́РКА,

нераздымнае злучэнне дэталей машын, канструкцый і збудаванняў пры іх награванні або пластычным дэфармаванні, у выніку якіх у месцы злучэння ўстанаўліваюцца трывалыя міжатамныя сувязі. Вызначаецца прадукцыйнасцю, універсальнасцю і эканамічнасцю. Пашырана ў прам. вытв-сці і буд-ве (гл. Зварныя канструкцыі). Найб. значэнне мае З. металаў і сплаваў; зварваюць таксама пластмасу, шкло, кераміку і інш.

Адрозніваюць З. плаўленнем і З. ціскам (пластычным дэфармаваннем). Да З. плаўленнем адносяцца: адзін з відаў высокачастотнай зваркі, газавая зварка, дугавая зварка, у т.л. газаэлектрычная зварка і падводная (гл. Падводная зварка і рэзка), лазерная зварка, плазменная зварка, электрашлакавая зварка, электронна-прамянёвая зварка і інш. Да З. ціскам адносяцца: адзін з відаў ВЧ-зваркі, кантактавая зварка, зварка выбухам, зварка трэннем, ультрагукавая зварка, халодная зварка, дыфузійная зварка і інш. У залежнасці ад віду зварачнага абсталявання адрозніваюць ручную, механізаваную і аўтам.

З.; ад спосабу аховы зварнога шва ад шкоднага ўздзеяння паветра — З. ў ахоўных газах, у вакууме, пад флюсам, з аховай шлакам; ад тыпу электродаў — З. плаўкімі і няплаўкімі (вугальнымі, вальфрамавымі і інш.) электродамі. Да зварачных адносяць таксама працэсы пайкі, наплаўкі і інш. Найпрасцейшыя віды З. (кавальская зварка, ліцейная) узніклі з пачаткам вытв-сці і апрацоўкі металаў. Найб. пашыраныя віды электразваркі (дугавая, кантактавая) створаны ў 19 ст. ў выніку прац В.У.Лятрова, М.М.Бенардоса, М.Г.Славянава і інш. Першую гарэлку зварачную (ацэтыленакіслародную) сканструяваў франц. інж. Э.фушэ (1903). Праблемы З. вывучаюцца ў Ін-це электразваркі АН Украіны і інш. Важныя даследаванні ў галіне З. правялі Я.А.Патон, Б.Я.Патон, Г.А.Нікалаеў, М.М.Рыкалін, К.К.Хрэнаў і інш.

Літ.:

Сварка в СССР. Т. 1—2. М., 1981;

Руге Ю. Техника сварки: Справ. Пер. с нем. Ч. 1—2. М., 1984;

Гурд Л.М. Основы технологии сварки: Пер. с англ. М., 1985;

Верховенко Л.В., Тукин А.К. Справочник сварщика. Мн., 1977;

Гуревич С.М. Справочник по сварке цветных металлов. 2 изд. Киев, 1990;

Сварка и свариваемые материалы: Справ. Т. 1—2. М., 1991—96.

У.М.Сацута.

Да арт. Зварка. А — схема дугавога разраду пры зварцы (1 — катод, 2 — слуп дугавога разраду, 3 — анод, 4 — полымя зварачнай дугі); Б — парашковы дрот для зваркі (1 — бясшвовы, 2 — трубчасты з нахлёсткай, 3 — фальцаваны, 4 — двухслойны).
Схема зваркі трэннем: 1, 2 — дэталі, якія зварваюцца; 3 — паверхня трэння і зваркі; V — скорасць; P — намаганне.

т. 7, с. 36

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ТЭХНАЛО́ГІЯ,

сукупнасць тэхнал. прыёмаў і спосабаў апрацоўкі, змены ўласцівасцей, стану і формы матэрыялу або паўфабрыкату з дапамогай выпрамянення лазераў. Асн. аперацыі Л.т. звязаны з цеплавым дзеяннем лазернага выпрамянення (пераважна цвердацелых лазераў і газавых лазераў). Эфектыўнасць Л.т. абумоўлена высокай лакальнасцю і кароткачасовасцю ўздзеяння, вял. шчыльнасцю патоку энергіі ў зоне апрацоўкі, магчымасцю вядзення тэхнал. працэсаў у празрыстых асяроддзях (у вакууме, газе, вадкасці, цвёрдым целе). Выкарыстоўваецца ў мікраэлектроніцы і электравакуумнай тэхніцы, паліграфіі, машынабудаванні, у прам-сці буд. матэрыялаў для свідравання адтулін, рэзкі і скрайбіравання (нанясення малюнкаў на паверхню) плёнак і паўправадніковых пласцін, зваркі (гл. Лазерная зварка), загартоўкі, гравіроўкі, нарэзкі рэзістараў, рэтушы фоташаблонаў і інш.

Свідраванне адтулін звычайна робіцца імпульсным лазерам (працягласць імпульсу 0,1—1 мс) у любых матэрыялах (цвёрдых, крохкіх, тугаплаўкіх, радыеактыўных). Лазерам свідруюць алмазныя фільеры для валачэння дроту, стальныя і керамічныя фільеры для вытв-сці штучных валокнаў, рубінавыя камяні для гадзіннікаў, ферытавыя пласціны для запамінальных прыстасаванняў ЭВМ, дыяфрагмы электронна-прамянёвых прылад, керамічныя ізалятары, вырабы са звышцвёрдых сплаваў і інш. Лазерная рэзка вядзецца ў імпульсным і бесперапынным рэжыме, з падачай у зону рэзкі струменю газу (звычайна паветра або кіслароду). Выкарыстоўваецца для раздзялення дыэлектрычных і паўправадніковых падложак (таўшчынёй 0,3—1 мм), скрайбіравання паўправадніковых пласцін, рэзання крохкіх вырабаў са шкла, сіталу і пад. (метадам тэрмічнага расколвання) і інш. Фігурная апрацоўка паверхні — стварэнне мікрарэльефа на матэрыялах выпарэннем, тэрмаапрацоўкай, акісляльна-аднаўляльнымі і інш рэакцыямі, выкліканымі награваннем, тэрмастымуляванымі дыфузійнымі працэсамі. Выкарыстоўваецца ў мікраэлектроніцы, паліграфічнай прам-сці, пры апрацоўцы цвёрдых сплаваў, ювелірных камянёў і інш. У электроннай тэхніцы перспектыўныя кірункі Л.т.: паверхневы адпал паўправадніковых пласцін з мэтай узнаўлення структуры іх крышталічнай рашоткі пры іонным легіраванні, стварэнне актыўных структур на паверхні паўправаднікоў, атрыманне p-n-пераходаў метадам лакальнай дыфузіі з лазерным нагрэвам, нанясенне тонкіх метал. і дыэл. плёнак лазерным выпарэннем і інш. У фоталітаграфіі Л.т. выкарыстоўваюцца для вырабу звышмініяцюрных друкарскіх плат, інтэгральных схем, відарысаў і інш. элементаў мікраэлектроннай тэхнікі; у хім. і мікрабіял. вытв-сці — для селектыўнага стымулявання хім. і біял. актыўнасці малекул; у медыцыне — для лячэння скурных захворванняў, язваў страўніка, кішэчніка і інш. Магутныя (ад 1 кВт і вышэй) лазеры выкарыстоўваюцца для рэзкі і зваркі тоўстых стальных лістоў, паверхневай загартоўкі, наплаўлення і легіравання буйнагабарытных дэталей, ачысткі будынкаў ад паверхневых забруджванняў, рэзкі мармуру, граніту, раскрою тканіны, скуры і інш.

На Беларусі распрацоўкі па Л.т. вядуцца ў ін-тах Нац. АН (фізікі, малекулярнай і атамнай фізікі, фізіка-тэхнічным, прыкладной фізікі, фотабіялогіі і інш.), Ін-це прыкладных фіз. праблем БДУ, Гомельскім ун-це, у шэрагу галіновых НДІ.

Літ.:

Лазерная и электронно-лучевая обработка материалов. М., 1985;

Дьюли У. Лазерная технология и анализ материалов: Пер. с англ. М., 1986;

Промышленное применение лазеров: Пер. с англ. М., 1988.

В.В.Валяўка, В.К.Паўленка.

Да арт. Лазерная тэхналогія. А Схема лазернай рэзкі з тэлекантролем працэсу. 1 — дэталь, якая апрацоўваецца; 2 — прыстасаванне факусіроўкі лазернага праменя; 3 — лазер; 4 — замкнёная тэлевізійная сістэма; 5 — дысплей. Б. Схема станка з рубінавым лазерам для святлопрамянёвай апрацоўкі: 1 — імпульсная лямпа; 2 — кандэнсатар; 3 — паралельныя люстэркі; 4 — штучны рубін; 5 — лінза; 6 — выраб, які апрацоўваецца.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАЛО́ГІЯ

(ад геа... + ...логія),

навука аб саставе, будове і гісторыі развіцця зямной кары і Зямлі, заканамернасцях утварэння і пашырэння горных парод, мінералаў, падземных вод і радовішчаў карысных выкапняў. Забяспечвае выяўленне і ацэнку мінер.-сыравінных рэсурсаў. Мае вял. гнасеалагічнае значэнне, паколькі аб’ект яе вывучэння — Зямля. Геалогія — адна з фундаментальных навук аб прыродзе Зямлі і Сусвету. Вылучаюць 3 кірункі геалогіі: апісальны (апісанне мінералаў, горных парод, геал. цел і інш.), дынамічны (вывучэнне геал. працэсаў і іх эвалюцыі), гістарычны (гісторыка-геал. рэканструкцыі). Геалогія падзяляецца на мінералогію, петраграфію, літалогію, стратыграфію, палеанталогію, палеагеаграфію, тэктоніку, гідрагеалогію, таксама геалогію антрапагену (гл. Чацвярцічная геалогія), інж., рэгіянальную, марскую, геалогію карысных выкапняў і інш.

Працэсы геал. мінулага даследуюцца на падставе вывучэння сучасных працэсаў з улікам эвалюцыі Зямлі (прынцып актуалізму). Геалогія карыстаецца метадамі назірання, картаграфавання, свідравання, комплексам геафіз. метадаў, касмічнай і аэрафотаздымкі, аптычнымі, электронна-мікраскапічнымі, рэнтгенаўскімі, спектральнымі, хім., ізатопнымі і інш. Цесна звязана з геагр. навукамі — геамарфалогіяй, фіз. геаграфіяй, кліматалогіяй, гідралогіяй, геадэзіяй, а таксама з навукамі, што вылучыліся з яе — геафізікай і геахіміяй. Геалогія шырока выкарыстоўвае дасягненні фізікі, хіміі, біялогіі, матэматыкі і інш. Геалогія ўзнікла ў працэсе практычнай дзейнасці чалавека, які з глыбокай старажытнасці выкарыстоўваў у побыце каменне, ваду падземных крыніц, руды. Першыя звесткі пра мінералы, горныя пароды, падземныя воды і пошукі карысных выкапняў ёсць у пісьмовых помніках Стараж. Егіпта, стараж. рукапісах Кітая, працах ант. вучоных Грэцыі і Рыма: Піфагора, Герадота, Арыстоцеля, Плінія Старэйшага. Перыяд да 18 ст. адметны назапашваннем разнастайных фактаў аб саставе горных парод і мінералаў, падземных вод, геал. з’явах. У 18 — 1-й пал. ст. М.В.Ламаносаў (Расія), Ж.Кюўе, Л.Элі дэ Бамон, А.Браньяр (Францыя), Л.Бух, А.Г.Вернер (Германія), У.Сміт, А.Седжвік, Р.І.Мурчысан, Ч.Лаель, Дж.Гетан (Вялікабрытанія), А.Грэслі (Швейцарыя) сістэматызавалі разрозненыя геал. звесткі, прапанавалі шэраг асноватворных уяўленняў геалогіі, заклалі фундамент геал. навукі, якая аформілася ў 2-й пал. 19 — пач. 20 ст.

Тэарэт. асновы сучаснай геалогіі складаюць вучэнні аб глабальнай тэктоніцы пліт (гл. Тэктанічныя гіпотэзы), платформах і геасінкліналях, фацыях і фармацыях, літагенезе, магматызме, рудаўтварэнні, падземных водах і інш. Уклад у развіццё геалогіі зрабілі А.Дз.Архангельскі, М.Бертран, С.М.Бубнаў, А.Вегенер, У.І.Вярнадскі, І.М.Губкін, Дж.Дана, А.М.Заварыцкі, Э.Зюс, У.А.Кавалеўскі, А.П.Карпінскі, Ф.Ю.Левінсон-Лесінг, Г.Ф.Мірчынк, Дз.В.Наліўкін, У.А.Обручаў, Э.Ог, А.П.Паўлаў, Ф.Дж.Петыджан, М.М.Страхаў, Я.С.Фёдараў, А.Я.Ферсман, В.Я.Хаін, Дж.Хол, М.С.Шацкі, Г.Штыле, А.Л.Яншын і інш.

На Беларусі геал. вывучэнне тэрыторыі вядзецца з пач. 19 ст.: рабіліся маршрутныя апісанні, даследаваліся асобныя радовішчы карысных выкапняў (А.Э.Гедройц, Р.П.Гельмерсен, М.І.Крыштафовіч, Г.Б.Місуна, В.М.Севяргін, П.А.Туткоўскі і інш.). Планамернае вывучэнне геал. будовы пачалося з 1927, калі быў арганізаваны геал. ін-т у складзе Інбелкульта. У 1937 створана Геал. ўпраўленне для кіравання геолага-здымачнымі і геолага-пошукавымі работамі. Пасля Вял. Айч. вайны праведзена сярэднемаштабная, часткова дэталёвая геал. і гідрагеал. здымка, выконваліся геафіз. даследаванні, пошукава-разведачныя работы, накіраваныя на выяўленне радовішчаў карысных выкапняў. Высветлена геал. будова і гісторыя геал. развіцця, тэктоніка тэр. Беларусі, дэталёва даследаваны петраграфія і мінералогія крышт. фундамента, літалогія і геахімія платформавага чахла. Разведаны запасы калійных і каменнай солей, прэсных і мінер. падземных вод і ёдабромных расолаў, сыравіны для вытв-сці буд. матэрыялаў. Выяўлены радовішчы нафты, бурага вугалю, гаручых сланцаў, жал. руд, фасфарытаў, даўсаніту, сіліцытаў, рэдкіх металаў і інш. Вядуцца значныя інж.-геал. і геаэкалагічныя даследаванні. Вялікі ўклад у вывучэнне нетраў зрабілі: арганізатар геал. службы на Беларусі М.Ф.Бліадухо, бел. навук. школы, заснаваныя Г.І.Гарэцкім (геалогія антрапагену), А.С.Махначом (літалогія і геахімія даантрапагенных адкладаў), К.І.Лукашовым (геахімія навакольнага асяроддзя), Р.Г.Гарэцкім (геатэктоніка), Г.В.Багамолавым (гідрагеалогія), А.В.Мацвеевым (вывучэнне сучасных геал. працэсаў і геамарфалогія), Э.А.Ляўковым (неагеадынаміка), а таксама У.А.Багіна, Г.І.Ількевіч, П.А.Леановіч, В.І.Пасюкевіч, П.З.Хоміч і інш. Вытворчыя і н.-д. геал. работы праводзяць ВА «Беларусьгеалогія» і «Беларусьнафта», Геолагаразведачны беларускі навукова-даследчы інстытут, Інстытут геалагічных навук (ІГН) Нац. АН Беларусі, Беларускае дзяржаўнае навукова-даследчае геалагічнае прадпрыемства (Белгеа), Бел. дзярж. ін-т інж. вышуканняў («Геасервіс») і інш. Кадры па геалогіі рыхтуюць БДУ і Гомельскі дзярж. ун-т. Геал. даследаванні і іх каардынацыю ажыццяўляюць таксама Геалагічны міжнародны кангрэс, Міжнар. саюз геал. навук, Беларускае геалагічнае таварыства, Бел. нац. камітэт геолагаў. Асн. перыяд. выданні: «Літасфера», «Даклады АН Беларусі», «Весці АН Беларусі» : інш.

Літ.:

Аллисон А., Палмер Д. Геология: Наука о вечно меняющейся Земле: Пер. с англ. М., 1984;

Уотсон Дж. Геология и человек: Введение в прикладную геологию: Пер. с англ. Л., 1986;

Махнач А.С., Вазнячук Л.М. Геалагічнае мінулае Беларусі. Мн., 1959;

Геология СССР. Т. 3. Белорусская ССР. М., 1971;

История геологических наук в Белорусской ССР. Мн., 1978;

Геология Белоруссии: Достижения и пробл.: Сб науч. тр. Мн., 1988;

Гарэцкі Р.Г. і інш. Праблемы вывучэння літасферы Беларусі // Літасфера. 1994. № 1;

Гарецкий Р.Г., Каратаев Г.И. Основные проблемы экологической геологии // Там жа. 1995. №2.

А.А.Махнач.

т. 5, с. 118

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)