ВАКУУММЕ́ТР,

прылада для вымярэння ціску газаў, ніжэйшага за атмасферны. Падзяляюцца на абсалютныя (напр., вадкасныя, дэфармацыйныя, кампрэсійныя) і адносныя (радыеметрычныя, цеплавыя, іанізацыйныя). Кожны тып вакуумметра разлічаны на вымярэнні ў пэўных межах ціску. Выкарыстоўваюцца ў энергетыцы, электроніцы, вакуумнай металургіі, хім. і харч. прам-сці.

Абсалютныя вакуумметры вымяраюць ціск непасрэдна; іх паказанні не залежаць ад роду газу. У вадкасных вакуумметрах вымераны ціск (рознасць ціскаў) ураўнаважваецца ціскам слупа вадкасці. Дзеянне кампрэсійных вакуумметраў заснавана на Бойля—Марыёта законе У рэфармацыйных вакуумметрах ціск вымяраецца па дэфармацыі адчувальнага элемента (сільфон, мембрана і інш.). Адносныя вакуумметры вымяраюць фіз. велічыні, залежныя ад ціску газу; градуіруюцца па абсалютных узорных вакуумметрах; іх паказанні залежаць ад роду газу. Прынцып дзеяння радыеметрычных вакуумметрах заснаваны на радыеметрычным эфекце, цеплавых — на цеплаабмене напаленай металічнай ніці, іанізацыйных — на вымярэнні сілы іоннага току; крыніца іанізацыі — паток электронаў ад напаленага катода, α- або β-часціцы.

М.І.Дудо.

т. 3, с. 465

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАВІТАЦЫ́ЙНЫ РА́ДЫУС у агульнай тэорыі адноснасці, радыус паверхні (сферы Шварцшыльда) у гравітацыйным полі сферычнага невярчальнага цела, на якой сіла прыцягнення імкнецца да бясконцасці; выпрамяненне ад крыніцы на гэтай паверхні мае бясконцае гравітацыйнае чырвонае зрушэнне. Гравітацыйны радыус вызначаецца масай цела M і роўны rg = 2GM/с2, дзе G — гравітацыйная пастаянная, c — скорасць святла ў вакууме.

Гравітацыйны радыус астр. аб’ектаў надзвычай малы ў параўнанні з іх сапраўднымі памерамі, напр., для Зямлі rg = 0,9 см, для Сонца rg = 3 км. Пры рэлятывісцкім гравітацыйным калапсе цела дасягае памераў, меншых за гравітацыйны радыус, і ніякія сілы не здольныя спыніць яго далейшага сціскання пад уздзеяннем сіл прыцягнення. Сфера Шварцшыльда з’яўляецца «гарызонтам падзей» для вонкавага назіральніка (з-пад яе не могуць выходзіць ні выпрамяненне, ні часціцы), таму вобласць r < rg наз. шварцшыльдаўскай чорнай дзірой, а сферу r = rg — шварцшыльдаўскай паверхняй.

М.М.Касцюковіч.

т. 5, с. 384

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСЦЫЛЯ́ТАР (ад лац. oscillare вагацца) гарманічны, сістэма, што выконвае механічныя (матэм. маятнік), электрамагнітныя (вагальны контур) або інш. ваганні, пры якіх патэнцыяльная энергія прапарцыянальная квадрату адхілення ад стану раўнавагі. Па ліку ступеняў свабоды адрозніваюць лінейныя, 2-, 3-мерныя і інш. Класічны асцылятар — часціца масай m, што вагаецца каля стану ўстойлівай раўнавагі, дзе яе патэнцыяльная энергія u мае мінімум. Пры гэтым пераменная сіла, што дзейнічае на часціцу, F = u x = kx , дзе k — пастаянная, x — зрушэнне ад стану раўнавагі. Пры малых зрушэннях x рух часціцы апісваецца лінейным ураўненнем гарманічнага вагання, калі зрушэнні x не малыя — нелінейным ураўненнем і асцылятар наз. ангарманічны. Квантавы асцылятар апісваецца Шродынгера ўраўненнем, у якім патэнцыяльная энергія E = kx2 2 . Адрозненні квантавага асцылятара ад класічнага: дыскрэтны набор значэнняў энергіі і найменшая магчымая энергія не роўная нулю (гл. Нулявая энергія). Паняцце асцылятара шырока выкарыстоўваюць у тэарэт. фізіцы, у тым ліку для апісання працэсаў эл.-магн. выпрамянення.

т. 2, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛІЛЕ́Я ПЕРАЎТВАРЭ́ННІ,

пераўтварэнні каардынат і часу рухомай часціцы пры пераходзе ад адной інерцыйнай сістэмы адліку (ІСА) да іншай у класічнай механіцы.

Для дзвюх ІСА K (x, y, z) і K′ (x′, y′, z′), якая рухаецца адносна K з пастаяннай скорасцю u уздоўж восі Ox, Галілея пераўтварэнні маюць выгляд: x = x ut , y = y , z = z , t = t , дзе x, y, z і x′, y′, z′ — каардынаты, t і t′ — моманты часу ў сістэмах K і K′ адпаведна. Такім чынам, у класічнай механіцы прамежкі часу паміж пэўнымі падзеямі і адлегласці паміж фіксаванымі пунктамі аднолькавыя ва ўсіх ІСА. З Галілея пераўтварэнняў вынікае закон складання скарасцей v = v u , а таксама аднолькавасць паскарэнняў ( a = a ) ва ўсіх ІСА. Апошняе з улікам пастаянства масы прыводзіць да інварыянтнасці ўраўненняў класічнай механікі ва ўсіх ІСА, што і з’яўляецца матэм. абгрунтаваннем Галілея прынцыпу адноснасці. Пры скарасцях руху, блізкіх да скорасці святла ў вакууме, Галілея пераўтварэнні замяняюцца Лорэнца пераўтварэннямі.

А.І.Болсун.

т. 4, с. 461

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАНЦУГО́ВАЯ Я́ДЗЕРНАЯ РЭА́КЦЫЯ,

ядзерная рэакцыя, у якой часціцы, што выклікаюць яе, утвараюцца як прадукты гэтай рэакцыі. Звязана з вял. энергавыдзяленнем (каля 200 МэВ на кожны акт дзялення ядра урану ці плутонію) і праходзіць з удзелам павольных ці хуткіх нейтронаў. Выкарыстоўваецца як крыніца энергіі (гл. Ядзерны рэактар), на ёй заснаваны прынцып работы ядзернай зброі.

Адзіная вядомая Л.я.р. — рэакцыя дзялення урану і некаторых трансуранавых элементаў пад уздзеяннем нейтронаў — здзейснена Э.Фермі (1942) з дапамогай уран-графітавага рэактара. Суправаджаецца выдзяленнем некалькіх нейтронаў, якія ў сваю чаргу могуць захоплівацца нераздзеленымі ядрамі і выклікаць іх дзяленне. Характарыстычная велічыня Л.я.р — каэфіцыент размнажэння k, які вызначаецца ўсярэдненымі лікамі актаў дзялення ў паслядоўных звёнах ланцуга. Самападтрымная рэакцыя магчыма толькі пры к>1; маса дзялільнага рэчыва для здзяйснення такой рэакцыі наз. крытычнай; яе велічыня залежыць ад формы і ізатопнага складу гэтага рэчыва і вагаецца ад соцень грамаў да соцень тон. Рухомыя стрыжні з матэрыялу, які добра паглынае павольныя нейтроны, дазваляюць зрабіць Л.я.р. кіравальнай.

Э.А.Рудак.

Першыя пакаленні нейтронаў, якія ўтвараюцца пры ланцуговай ядзернай рэакцыі.

т. 9, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЗІМЕТРЫ́ЧНЫЯ ПРЫЛА́ДЫ,

сістэмы, устаноўкі і прылады для рэгістрацыі і вымярэння іанізавальных выпрамяненняў і актыўнасці іх крыніц. Маюць дэтэктар (паглынае энергію выпрамянення; гл. Дэтэктары ядзерных выпрамяненняў), вымяральнае прыстасаванне (вымярае велічыню радыяцыйных эфектаў) і выхадную прыладу (стрэлачныя прылады, самапісцы, эл.-мех. лічыльнікі, гукавыя ці светлавыя сігналізатары і інш.). У залежнасці ад віду кантролю падзяляюць на 6 груп.

Да 1-й групы адносяць прылады для вымярэння магутнасці дозы рэнтгенаўскага γ-выпрамянення і патокаў нейтронаў з дапамогай іанізацыйных камер або сцынцыляцыйных дэтэктараў, да 2-й — прылады для вымярэння патокаў α- і β-часціц з забруджаных паверхняў з дапамогай сцынцыляцыйных дэтэктараў, прапарцыянальных лічыльнікаў з паветр. запаўненнем (α-часціцы) і β-лічыльнікаў, да 3-й — устаноўкі для вымярэння забруджанасці паветра актыўнымі газамі, аэразолямі і інш. з дапамогай іанізацыйных камер, да 4-й — радыеметрычныя ўстаноўкі для вымярэння абсалютнай актыўнасці проб вады і прадуктаў харчавання з дапамогай газанапоўненых і сцынцыляцыйных дэтэктараў, да 5-й — апаратура для вымярэння індывідуальных доз γ-выпрамянення і нейтронаў з дапамогай касет з фотаплёнкамі або малых іанізацыйных камер, да 6-й — устаноўкі, якія маюць вял. сцынцыляцыйныя дэтэктары, для вымярэння натуральнага γ-выпрамянення чалавека, вызначэння наяўнасці β- і γ-актыўных рэчываў. Многія тыпы Д.п. выпускаюць прадпрыемствы Беларусі.

А.В.Берастаў.

т. 6, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗ

(франц. gaz ад грэч. chaos хаос),

агрэгатны стан рэчыва, у якім слаба звязаныя малекулярнымі сіламі часціцы рухаюцца свабодна і пры адсутнасці знешніх палёў раўнамерна запаўняюць увесь дадзены ім аб’ём. Газ, у якім энергію ўзаемадзеяння паміж часціцамі можна не ўлічваць, наз. ідэальным газам. Яго стан апісваецца Клапейрона—Мендзялеева ўраўненнем.

Рэальныя газы пры звычайных умовах мала адрозніваюцца ад ідэальнага, а пры памяншэнні ціску і павышэнні т-ры па ўласцівасцях набліжаюцца да яго; часцей іх стан апісваецца Ван-дэр-Ваальса ўраўненнем. Пры паніжэнні т-ры газы дасягаюць крытычнага стану, пры далейшым ахаладжэнні і павышэнні ціску адбываецца звадкаванне газаў. Калі рух часціц падпарадкоўваецца законам класічнай механікі, газ наз. нявыраджаным (рэальныя газы), а калі квантавыя ўласцівасці часцінак газа пераважаюць — выраджаным (электронны газ у металах пры тэмпературах, блізкіх да 0 К). Пры нізкіх т-рах газы добрыя дыэлектрыкі, але пры пэўных умовах могуць праводзіць эл. ток (гл. Электрычныя разрады ў газах). Мех. ўласцівасці газаў вывучаюцца ў газавай дынаміцы і аэрадынаміцы. Газы складаюць асн. масу атмасферы, пашыраны ў зямной кары, маюць вял. значэнне ў існаванні жывых арганізмаў (гл., напр., Дыханне, Газаабмен) і біягеахімічным кругавароце рэчываў, газы прыродныя гаручыя — кашт. сыравіна для хім. і газавай прам-сці, крыніца забеспячэння разнастайных бытавых, тэхн. і інш. патрэб гаспадаркі.

А.І.Болсун.

т. 4, с. 423

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́РУСЫ

(ад лац. virus яд),

найдрабнейшыя субмікраскапічныя арганізмы няклетачнай будовы, якія складаюцца з нуклеінавай кіслаты і бялковай абалонкі (капсіды). Вірусы — унутрыклетачныя паразіты, якія выклікаюць вірусныя хваробы чалавека і жывёл, а таксама вірусныя хваробы раслін. вірус бактэрый — бактэрыяфагі. Адкрыты рус. вучоным Дз.І.Іваноўскім (1892), пашыраны ўсюды. Апісана каля 500 формаў вірусаў, якія шкодзяць цеплакроўнай жывёле і больш за 600 формаў вірусаў, што заражаюць вышэйшыя расліны. Вірусы існуюць у форме пазаклетачнай віруснай часціцы (вірыёна) і ўнутрыклетачнай (комплекс Вірус — клетка). Размнажаюцца толькі ў жывых клетках арганізма-гаспадара, выкарыстоўваючы іх ферментатыўны апарат. Нуклеінавая кіслата (РНК пераважна ў фітапатагенных вірусах і ДНК — у вірусах, якія шкодзяць чалавеку і жывёле) — носьбіт спадчыннасці і інфекцыйнасці. Форма вірусаў вызначаецца будовай бялковай абалонкі: палачка- або ніткападобная, сферычная, бацылападобная і інш.; памеры ад 15 да 2000 нм і больш. Вывучае вірусы — вірусалогія.

У вірусах адсутнічае ўласны абмен рэчываў і рэпрадукцыя цалкам залежыць ад метабалічнай актыўнасці клетак гаспадара. Пранікаючы ў клетку, яны накіроўваюць працэсы сінтэзу на рэпрадукцыю саміх вірусаў і ўводзяць дапаўняльную генетычную інфармацыю, якая адмоўна ўплывае на метабалізм клетак. У працэсе рэпрадукцыі фітапатагенных вірусаў узнікаюць генетычна змененыя формы (штамы), што мае вял. значэнне ў эвалюцыі. Вірусы раслін распаўсюджваюцца мех. шляхам, пыльцой, насеннем, з пасадачным матэрыялам, натуральнымі пераносчыкамі (нематодамі, тлямі, грыбамі і інш.).

Літ.:

Биология вирусов животных: Пер. с англ. Т. 1—2. М., 1977;

Гиббс А.,Харрисон Б. Основы вирусологии растений: Пер. с англ. М., 1978;

Власов Ю.И., Ларина Э.И. Сельскохозяйственная вирусология. М., 1982.

Ж.В.Блоцкая.

т. 4, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́ЛІЙ

(лац. Helium),

Не, хімічны элемент VII групы перыядычнай сістэмы, ат. н. 2, ат. м. 4,0026. Прыродны гелій складаецца з 2 стабільных ізатопаў ​4He (99,999862%) і ​3He. Належыць да інертных газаў. Адзін з найб. пашыраных элементаў космасу (2-і пасля вадароду). Адкрыты ў 1868 астраномамі Ж.Жансэнам і Н.Лок’ерам у спектры сонечнай кароны (назва ад грэч. helios — Сонца). У атмасферы 5,27·10​-4% па аб’ёме (​4He утвараецца пры α-распадзе радыенуклідаў торыю, урану і інш. элементаў). Ядры ​4He — альфа-часціцы. Гелій маюць некат. прыродныя газы (да 2% па аб’ёме) і мінералы. Вылучаны ў 1895 У.Рамзаем з мінералу клевеіту.

Аднаатамны газ без колеру і паху, tкіп -268,39 °C (самая нізкая сярод вадкасцей), шчыльн. 0,17847 кг/м³ (0 °C). Адзіны элемент, які не цвярдзее пры нармальным ціску нават пры т-ры, блізкай да 0 К, tпл -271,25 °C (ціск 3,76 МПа). Горш за інш. газы раствараецца ў вадзе, характарызуецца выключнай хім. інертнасцю. У прам-сці атрымліваюць з газаў прыродных гаручых метадам глыбокага ахаладжэння. Выкарыстоўваюць пры зварцы, рэзцы металаў, перапампоўванні ракетнага паліва, у вытв-сці цеплавыдзяляльных элементаў, паўправадніковых матэрыялаў (у якасці ахоўнага асяроддзя), у аэранаўтыцы, для кансервацыі харч. прадуктаў і інш. Гелій вадкі — квантавая вадкасць. Пры т-ры 2,17 К (-270,98 °C) і ціску пары 0,005 МПа (т.зв. λ-пункт) у вадкім ​4He (бозэ-вадкасць) адбываецца фазавы пераход другога роду (ад He I да He II). He I бурна кіпіць ва ўсім аб’ёме, He II — спакойная вадкасць, якой уласціва звышцякучасць. Выкарыстоўваюць у крыягеннай тэхніцы як холадагент, вадкі ​3He — адзінае рэчыва для вымярэння т-ры ніжэй за 1 К.

В.Р.Собаль.

т. 5, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАПАЎНЯ́ЛЬНАСЦІ ПРЫ́НЦЫП,

метадалагічны прынцып, прапанаваны Н.Борам (1927) у сувязі з неабходнасцю стварэння лагічна несупярэчлівай фіз. інтэрпрэтацыі квантавай механікі; метадалагічнае абагульненне неазначальнасцей суадносін.

Мікраскапічныя аб’екты (электроны, фатоны і інш.) у розных эксперым. умовах могуць паводзіць сябе як строга лакалізаваныя часціцы ці як хвалі. Аднак уяўленне пра суіснаваине карпускулярных і хвалевых уласцівасцей у адным і тым жа аб’екце звязана з неабходнасцю аб’яднання несумяшчальных паняццяў (напр., паняцце даўжыні хвалі ў пэўным пункце прасторы не мае сэнсу). У адпаведнасці з Д.п. пры тэарэт. апісанні мікраскапічных з’яў неабходна ўжываць 2 сістэмы макраскапічных паняццяў, бо выкарыстанне адной з іх выключае магчымасць адначасовага выкарыстання другой; абедзве ж яны аднолькава неабходныя для поўнага апісання квантава-мех. сістэм і з’яўляюцца нібыта ўзаемна дапаўняльнымі бакамі такога апісання. Бор прадэманстраваў таксама справядлівасць Д.п. ў дачыненні да апісання біял., псіхал. і сац. з’яў. З дапамогай Д.п. ўстанаўліваецца эквівалентнасць (раўназначнасць) паміж двума класамі паняццяў, што апісваюць супярэчлівыя сітуацыі ў розных сферах пазнання. У вузкім сэнсе Д.п. супадае з прынцыпам ням. фізіка В.Гайзенберга, які адзначаў, што пры пэўнасці каардынаты мікрачасціцы мае месца нявызначанасць імпульсу і наадварот. Часам Д.п. ацэньваецца як метадалогія, толькі знешне падобная на дыялектычную, або наогул як метафізічны падыход (мех. злучэнне процілегласцей). Фізікі капенгагенскай школы (П.Іордан, Дж.Франк) лічылі Д.п. чыста суб’ектыўным, цалкам абумоўленым слабасцямі пазнання, звязанымі з адсутнасцю спец. сродкаў адлюстравання цэласнасцей, вымушанасцю пазнання па частках.

Літ.:

Крымский С.Б., Кузнецов В.И. Мировоззренческие категории в современном естествознании. Киев, 1983;

Дополнительность и методология научного познания // Нильс Бор и наука XX в.: Сб. науч. тр. Киев, 1988;

Мировоззренческие структуры в научном познании. Мн., 1993.

Л.М.Тамільчык, А.В.Ягораў.

т. 6, с. 50

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)