АЛЕРГЕ́НЫ,
рэчывы, здольныя выклікаць алергію. Да іх адносяцца бялковыя і небялковыя (поліцукрыды) злучэнні, неарган. рэчывы, у т. л. асобныя элементы (бром, ёд і інш.). Небялковыя рэчывы становяцца алергенамі толькі пасля злучэння з бялкамі тканак арганізма Адрозніваюць эндаалергены (утвараюцца ў арганізме) і экзаалергены інфекц. і неінфекц. паходжання. Сярод алергенаў інфекц. паходжання вылучаюць бактэрыяльныя, вірусныя і грыбковыя. Да неінфекц. адносяцца бытавыя (бытавы, бібліятэчны пыл і інш.), эпідэрмальныя (воўна, пер’е птушак, валасы, перхаць), інсектныя (яд, сліна кусачых, пыл з часцінак насякомых), лекавыя, пылковыя (раслінны пылок), прамысл.-хім. (бензол, шкіпінар, фарбавальнікі і інш.), харч. рэчывы. Алерген выклікае імуналагічна апасродкаваную адчувальнасць арганізма да яго (сенсібілізацыю). Ад першай дозы ў арганізме ўтвараюцца антыцелы, здольныя ўзаемадзейнічаць толькі з пэўным алергенам. Паўторна трапляючы ў арганізм, алерген злучаецца з раней утворанымі антыцеламі і выклікае алергічную рэакцыю.
А.Ф.Сарока.
т. 1, с. 247
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГУК,
ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.
Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.
П.С.Габец, А.Р.Хаткевіч.
т. 5, с. 522
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЯ́ЗКАСЦЬ БІЯЛАГІ́ЧНЫХ АСЯРО́ДДЗЯЎ,
уласцівасць структураваных высокадысперсных асяроддзяў біял. паходжання (клетачнай цытаплазмы, ліквору, лімфы і плазмы крыві і інш.), супраціўляцца перамяшчэнню адной іх часткі адносна другой. У большасці выпадкаў вызначаецца структурнай вязкасцю і ў адрозненне ад нармальных (ньютанаўскіх) вадкасцей (вада, спірт, вазелінавы алей і інш.) лічыцца анамальнай — назіраюцца адхіленні паводле тыпу тыксатрапіі. У анамальных вадкасцях (напр., высокадысперсных біял. асяроддзях і растворах біяпалімераў) за кошт сіл счэплівання часцінак або макрамалекул узнікаюць трывалыя прасторавыя структуры, якія выклікаюць рэзкае павышэнне вязкасці. Абсалютная вязкасць цытаплазмы вагаецца ад 2 да 50 спз (1 спз = 10-3н·с/м²), яна мяняецца ў розных частках клеткі і ў розныя перыяды жыцця, залежыць ад т-ры і ўздзеяння апрамянення. Вязкасць крыві ў чалавека ў норме 4—5 спз, пры паталагічных працэсах вагаецца ад 1,7 да 22,9 спз, што паказвае САЭ (скорасць асядання эрытрацытаў).
А.М.Ведзянееў.
т. 4, с. 341
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЭРАЗО́ЛІ
(ад аэра... + золі),
дысперсныя сістэмы з цвёрдымі ці вадкімі часцінкамі, завіслымі ў газавым асяроддзі (пераважна ў паветры). Да аэразоляў адносяцца туман, воблакі, дым (памер часцінак 0,1—5 мкм), пыл (10—100 мкм) і інш. Аэразолі ўтвараюцца ў прыродных працэсах (воблачнасць, вывяржэнні вулканаў, лясныя пажары, пылавыя буры, метэарытны і касм. пыл і інш.) або ў выніку дзейнасці чалавека (прамысл. і трансп. выкіды, пэўныя тэхналогіі, гарэнне паліва, пораху, арган. рэчываў, тытуню, радыяц. забруджванне). Аэразолі з прыроднага туману і выкідаў прам-сці наз. смогам.
Аэазолі ўплываюць на эл. і хім. характарыстыкі атмасферы, рассейванне і паглынанне ў ёй сонечнай радыяцыі, бачнасць, фарміраванне воблакаў і ападкаў. Штучныя аэразолі выкарыстоўваюцца ў аэразольтэрапіі (інгаляцыя, дэзінфекцыя), прам-сці (нанясенне металічных і лакафарбавых пакрыццяў, распыленне паліва), сельскай гаспадарцы (распыленне пестыцыдаў, інсектыцыдаў). Узнікненне аэразоляў часта непажаданае з-за страт каштоўных рэчываў, забруджвання паветра, шкоднага ўздзеяння на людзей і навакольнае асяроддзе, тэхн. канструкцыі і інш. (гл. таксама Аэразольная катастрофа).
т. 2, с. 173
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́ДКАСЦЬ,
агрэгатны стан рэчыва, прамежкавы паміж цвёрдым і газападобным. Фіз. ўласцівасці і структура (блізкі парадак) залежаць ад хім. прыроды часцінак вадкасці і характару ўзаемадзеяння паміж імі. Спалучае ўласцівасці цвёрдага (малая сціскальнасць, свабодная паверхня, трываласць на разрыў пры ўсебаковым расцягненні і інш.) і газападобнага (зменлівасць формы) рэчываў. Існуе пры т-рах у інтэрвале ад т-ры крышталізацыі да т-ры кіпення і цісках большых, чым у трайным пункце.
Цеплавы рух малекул вадкасці складаецца з ваганняў каля стану раўнавагі і рэдкіх пераскокаў з аднаго раўнаважнага стану ў іншы, чым абумоўлена асн. ўласцівасць вадкасці — цякучасць. Адрозненні паміж вадкасцю і газам знікаюць у крытычным стане; пры больш высокіх т-рах вадкасць не існуе ні пры якім ціску. Некат. рэчывы маюць некалькі вадкіх фаз (напр., квантавыя вадкасці, вадкія крышталі). Нераўнаважныя цеплавыя і мех. працэсы ў вадкасці. (напр., дыфузія, цеплаправоднасць, электраправоднасць і інш.) вывучаюцца метадамі тэрмадынамікі неабарачальных працэсаў; мех. рух вадкасці як суцэльнага асяроддзя вывучае гідрадынаміка, няньютанавы (структурна-вязкасныя) вадкасці — рэалогія.
Літ.:
Крокстон К. Фиизика жидкого состояния: Пер. с англ. М., 1978;
Динамические свойства твердых тел и жидкостей: Пер. с англ. М., 1980.
В.І.Навуменка.
т. 3, с. 438
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАПНЯ́К,
асадкавая горная парода, складзеная з карбанатаў кальцыю (кальцыт, радзей араганіт). Мае прымесі даламіту, гліністых і пясчаных часцінак і інш. Нярэдка ўключае рэшткі вапняковых шкілетаў выкапнёвых арганізмаў. Колер белы, шэры з рознымі адценнямі. Шчыльн. 2700—2900 кг/м³.
Паводле паходжання вапнякі бываюць: арганагенныя — з ракавін (ракушачнікі) або з калоній каралаў, імшанак, водарасцяў; арганагенна-абломкавыя (дэтрытусавыя) — з абломкаў арган. рэшткаў; абломкавыя — з абкатаных карбанатных абломкаў; хемагенныя; перакрышталізаваныя. Вапняк звязаны паступовымі пераходамі з даламітамі, глінамі, пясчанікамі і інш.; пры метамарфізме пераходзіць у мармур. Большасць вапнякоў марскога паходжання, аднак ёсць і вапнякі прэснаводных азёраў, засоленых поймаў, мінер. крыніц (вапнавыя туфы і інш.). Пласты дасягаюць магутнасці ў сотні і тысячы метраў. Здольныя да ўзнікнення з’яў карсту.
На Беларусі вапняк найб. пашыраны ў адкладах дэвону, ардовіку, сілуру, верхняга мелу, трапляецца таксама ў кам.-вуг., пермскай і юрскай сістэмах. Выкарыстоўваецца ў прам-сці (флюсы, выраб фарбаў, шкла, гумы, пластмасаў, лекаў, мыла і інш.), сельскай гаспадарцы (вапнаванне глебы), буд-ве (вапна, цэмент) і архітэктуры, харч. прам-сці (вытв-сць цукру) і інш.
т. 3, с. 507
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АБАГАЧЭ́ННЕ КАРЫ́СНЫХ ВЫ́КАПНЯЎ,
сукупнасць працэсаў і метадаў канцэнтрацыі мінералаў пры пач. перапрацоўцы цвёрдых карысных выкапняў. Праводзіцца пры малой колькасці каштоўных кампанентаў у сыравіне або наяўнасці ў ёй шкодных прымесяў. Пры абагачэнні адбываецца мех. раздзяленне мінералаў, атрыманне канчатковых прадуктаў (напр., сільвініту, азбесту, графіту і інш.), канцэнтратаў, прыдатных на металургічную, хім. і інш. перапрацоўку і адходы. Пры абагачэнні карысных выкапняў з руд вылучаюць ад 60 да 95% карысных кампанентаў (з малібдэнавых руд з 0,1% Мо атрымліваюць 50%-ны канцэнтрат). Асн. метады абагачэння — флатацыя, гравітацыйнае абагачэнне, магнітная і эл. сепарацыя. Практыкуецца таксама абагачэнне па вонкавых прыкметах (сартаванне мінералаў па колеры і бляску), радыеметрычнае (па прыроднай ці наведзенай радыеактыўнасці), на ліпкіх паверхнях (наліпанне алмазаў з пульпы на паверхню са слоем тлушчу) і інш. Метады абагачэння карысных выкапняў выкарыстоўваюцца паасобку або ў розных спалучэннях. Флатацыяй вылучаюць хлорысты калій з сільвінітавай руды на калійных камбінатах Беларусі. Пры гравітацыйным абагачэнні выкарыстоўваюць розную шчыльнасць мінералаў. Магнітнай сепарацыяй раздзяляюць матэрыялы рознай магнітнай успрымальнасці (напр., жал. руду). Эл. метады заснаваны на неаднолькавай электраправоднасці часцінак і рознай іх здольнасці набываць эл. зарады. Абагачэнне карысных выкапняў павялічвае прадукцыйнасць і эфектыўнасць металург. і хім. працэсаў.
М.Я.Зусь.
т. 1, с. 10
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЧЫ́СТКА АСЯРО́ДДЗЯ,
комплекс мерапрыемстваў па прадухіленні наступстваў забруджвання навакольнага асяроддзя ад антрапагеннага ўздзеяння. Падзяляецца на ачыстку паветра, ачыстку паверхневых і падземных водаў, глебы, біясферы і мерапрыемствы па зніжэнні антрапагеннага, шумавога і тэмпературнага забруджвання. Ачыстка паверхневых водаў прадугледжвае стварэнне сістэмы фільтрацыі, аэрацыі, абясшкоджання вады ў паверхневых крыніцах, ачыстку сцёкавых водаў, стварэнне замкнёных сістэм водазабеспячэння прадпрыемстваў, укараненне сістэм біял. ачысткі, рэканструкцыю сетак і збудаванняў сістэм водазабеспячэння. Ачыстка падземных водаў неабходная ў выпадках забруджвання гэтых водаў нітратамі, радыенуклідамі і інш. шкоднымі для здароўя чалавека рэчывамі. Пры значным перавышэнні забруджвання падземных водаў прадугледжваецца забарона іх ужывання. Ачыстка глебы патрабуецца ў выпадках перанасычэння яе мінер. ўгнаеннямі і ядахімікатамі, назапашваннем адходаў прам-сці ці жыццядзейнасці чалавека (звалкі). Выкарыстоўваюць прыёмы агратэхнікі і севазвароту, утылізацыі адходаў і інш.; у выпадках катастрафічнага яе забруджвання (напр., радыенуклідамі) неабходна радыкальная ачыстка з выдаленнем і пахаваннем паверхневых пластоў глебы і забаронай іх выкарыстання. Ачыстка біясферы прадугледжвае паніжэнне ў ёй узроўню шкодных рэчываў: новых хім. злучэнняў (ксенабіётыкі, некаторыя пестыцыды, поліхлорбіфенілы і інш.), часцінак і чужародных прадметаў (попел, сажа, пыл і інш.), а таксама шуму, радыеактыўнасці (ад ядз. выпрабаванняў, назапашванне радыеактыўных адходаў ад АЭС, пры аварыях на атамных прадпрыемствах і інш.). У выпадках забруджвання біясферы радыенуклідамі неабходна спец. пахаванне заражаных жывёльных і раслінных аб’ектаў ці абмежаванае іх выкарыстанне.
Т.А.Філюкова.
т. 2, с. 164
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЗ
(франц. gaz ад грэч. chaos хаос),
агрэгатны стан рэчыва, у якім слаба звязаныя малекулярнымі сіламі часціцы рухаюцца свабодна і пры адсутнасці знешніх палёў раўнамерна запаўняюць увесь дадзены ім аб’ём. Газ, у якім энергію ўзаемадзеяння паміж часціцамі можна не ўлічваць, наз. ідэальным газам. Яго стан апісваецца Клапейрона—Мендзялеева ўраўненнем.
Рэальныя газы пры звычайных умовах мала адрозніваюцца ад ідэальнага, а пры памяншэнні ціску і павышэнні т-ры па ўласцівасцях набліжаюцца да яго; часцей іх стан апісваецца Ван-дэр-Ваальса ўраўненнем. Пры паніжэнні т-ры газы дасягаюць крытычнага стану, пры далейшым ахаладжэнні і павышэнні ціску адбываецца звадкаванне газаў. Калі рух часціц падпарадкоўваецца законам класічнай механікі, газ наз. нявыраджаным (рэальныя газы), а калі квантавыя ўласцівасці часцінак газа пераважаюць — выраджаным (электронны газ у металах пры тэмпературах, блізкіх да 0 К). Пры нізкіх т-рах газы добрыя дыэлектрыкі, але пры пэўных умовах могуць праводзіць эл. ток (гл. Электрычныя разрады ў газах). Мех. ўласцівасці газаў вывучаюцца ў газавай дынаміцы і аэрадынаміцы. Газы складаюць асн. масу атмасферы, пашыраны ў зямной кары, маюць вял. значэнне ў існаванні жывых арганізмаў (гл., напр., Дыханне, Газаабмен) і біягеахімічным кругавароце рэчываў, газы прыродныя гаручыя — кашт. сыравіна для хім. і газавай прам-сці, крыніца забеспячэння разнастайных бытавых, тэхн. і інш. патрэб гаспадаркі.
А.І.Болсун.
т. 4, с. 423
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛА́ЗЕРНАЕ ЗАНДЗІ́РАВАННЕ атмасферы і гідрасферы,
светлавая лакацыя структуры і саставу асяроддзя на аснове імпульсных лазераў. Характарызуецца высокай прасторавай і часавай раздзяляльнай здольнасцю, экспрэснасцю, бескантактнасцю, магчымасцю атрымання звестак з вял. прасторы.
Заснавана на рассеянні імпульснага лазернага выпрамянення ў паветры ці вадзе і залежнасці ўласцівасцей рассеянага святла ад саставу і інш. характарыстык рассейвальнага асяроддзя (гл. Рассеянне святла). Пры Л.з. вымяраюць інтэнсіўнасць і спектральны састаў рассеянага святла, яго дэпалярызацыю і доплераўскі зрух частаты (гл. Доплера эфект), спазняльнасць адносна моманту, у які лазерны імпульс накіроўваецца ў асяроддзе. Гэта дае магчымасць вызначыць у атмасферы канцэнтрацыю розных газаў і аэразолей, сярэдні памер часцінак, іх дысперснасць і форму, іншы раз і хім. састаў, т-ру паветра, скорасць ветру; для вады — канцэнтрацыю арган. і неарган. завісі, стан воднай паверхні, яе т-ру і інш.; па часе запазнення вызначаюць адлегласць да месца, з якога прыйшло рассеянае святло. Прылады для Л.з. наз. лідарамі. Л.з. дае магчымасць кантраляваць забруджванне атмасферы, «азонныя дзіры» і інш.
На Беларусі работы па Л.з. вядуцца з сярэдзіны 1960-х г. у Ін-це фізікі Нац. АН (у 1966 тут праведзена першае ў СССР Л.з. атмасферы і вады).
Літ.:
Лазерный контроль атмосферы: Пер. с англ. М., 1979;
Зеге Э.П., Иванов А.П., Кацев И.А. Перенос изображения в рассеивающей среде. Мн., 1985;
Иванов В.И., Малевич И.Л., Чайковский А.П. Многофункциональные лидарные системы. Мн., 1986.
А.П.Іваноў.
т. 9, с. 100
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)