ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУК,

ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.

Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.

П.С.Габец, А.Р.Хаткевіч.

т. 5, с. 522

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛУ́РГІЯ (ад грэч. metallurgeō здабываю руду, апрацоўваю металы),

галіна навукі, тэхнікі і прам-сці, якая ахоплівае працэсы атрымання металаў з руд і інш. матэрыялаў, змены хім. саставу, структуры і ўласцівасцей метал. сплаваў, надання металу пэўнай формы. Працэсы М.: падрыхтоўка руд (здрабненне, абагачэнне карысных выкапняў, абпал або сушка, агламерацыя, брыкетаванне і інш.); вылучэнне металаў з руд і інш. матэрыялаў, ачыстка іх ад непажаданых дамешкаў (рафінаванне металаў); вытв-сць металаў і сплаваў; тэрмічная апрацоўка, хіміка-тэрмічная апрацоўка, тэрмамеханічная апрацоўка, ліццё і апрацоўка металаў ціскам, зварка і паянне; нанясенне ахоўных і дэкаратыўных пакрыццяў з інш. металаў і неметалаў на паверхні метал. вырабаў (металізацыя). М. падзяляецца на чорную металургію (атрыманне чыгуну, сталі, ферасплаваў, пракату і некат. вырабаў з чыгуну і сталі) і каляровую металургію (вытв-сць і апрацоўка каляровых металаў і сплаваў). У залежнасці ад метадаў атрымання металаў і сплаваў адрозніваюць вакуумную металургію, гідраметалургію, парашковую металургію, піраметалургію, плазменную металургію, электраметалургію. Важнай галіной М. з’яўляецца металазнаўства.

М. ўзнікла ў глыбокай старажытнасці. Паводле археал. даных, медзь атрымлівалі ўжо ў 7—6-м тыс. да н.э., з 4—3-га тыс. да н.э. выкарыстоўвалі яе сплаў з волавам — бронзу. З сярэдзіны 2-га тыс. да н.э. пачалі выплаўляць жалеза (гл. Сырадутны працэс), з сярэдзіны 14 ст. — чыгун (гл. Доменны працэс), з 18 ст. — сталь, выкарыстоўваючы тыгельную плаўку, а потым бесемераўскі працэс, мартэнаўскі працэс, тамасаўскі працэс, кіслародна-канвертарны працэс. Найб. актыўна як галіна прам-сці і навукі М. развіваецца з 19 ст. дзякуючы вынаходствам і распрацоўкам Г.Бесемера і С.Дж.Томаса (Англія), А.Мартэнса (Германія), П.Э.Мартэна (Францыя), П.П.Аносава і Дз.К.Чарнова (Расія) і інш. М. — адна з найважнейшых галін сучаснай прам-сці; маштабы вытв-сці металаў (у першую чаргу сталі) характарызуюць тэхніка-эканам. ўзровень развіцця краіны.

На Беларусі вытв-сць некаторых бронзавых рэчаў з прывазной сыравіны пачалася з сярэдзіны 2-га тыс. да н.э., чорная М. з’явілася ў 7—6 ст. да н.э. Жалеза здабывалі з балотнай руды ў печах-домніцах (сырадутных горнах), пераплаўлялі ці награвалі для апрацоўкі ў тыгельных, крычных і кавальскіх горнах (гл. Горан). Як навука М. на Беларусі развіваецца ў Фізіка-тэхнічным і інш. ін-тах Нац. АН, у БПА, галіновых НДІ, некаторых ВНУ. Асн. вытворца чорнага пракату для прам-сці краіны — Беларускі металургічны завод у Жлобіне, значная ч. прадукцыі якога ідзе на экспарт. Вытв-сць сталі і чыгунных вырабаў ёсць на з-дах «Цэнтраліт» (Гомель), МТЗ, МАЗ, станкабудаўнічым імя Кірава (Мінск), «Праммашрамонт» (Полацк), Мінскім механічным імя Вавілава і інш. Гл. таксама Металургічная прамысловасць.

Літ.:

Основы металлургии. Т. 1—7. М., 1961—75;

Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия. 4 изд. М., 1985;

Венецкий С.И. От костра до плазмы: Рассказ о многовековом пути, пройденном металлургией... М., 1986.

А.П.Ласкаўнёў.

т. 10, с. 306

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ТЭХНАЛО́ГІЯ,

сукупнасць тэхнал. прыёмаў і спосабаў апрацоўкі, змены ўласцівасцей, стану і формы матэрыялу або паўфабрыкату з дапамогай выпрамянення лазераў. Асн. аперацыі Л.т. звязаны з цеплавым дзеяннем лазернага выпрамянення (пераважна цвердацелых лазераў і газавых лазераў). Эфектыўнасць Л.т. абумоўлена высокай лакальнасцю і кароткачасовасцю ўздзеяння, вял. шчыльнасцю патоку энергіі ў зоне апрацоўкі, магчымасцю вядзення тэхнал. працэсаў у празрыстых асяроддзях (у вакууме, газе, вадкасці, цвёрдым целе). Выкарыстоўваецца ў мікраэлектроніцы і электравакуумнай тэхніцы, паліграфіі, машынабудаванні, у прам-сці буд. матэрыялаў для свідравання адтулін, рэзкі і скрайбіравання (нанясення малюнкаў на паверхню) плёнак і паўправадніковых пласцін, зваркі (гл. Лазерная зварка), загартоўкі, гравіроўкі, нарэзкі рэзістараў, рэтушы фоташаблонаў і інш.

Свідраванне адтулін звычайна робіцца імпульсным лазерам (працягласць імпульсу 0,1—1 мс) у любых матэрыялах (цвёрдых, крохкіх, тугаплаўкіх, радыеактыўных). Лазерам свідруюць алмазныя фільеры для валачэння дроту, стальныя і керамічныя фільеры для вытв-сці штучных валокнаў, рубінавыя камяні для гадзіннікаў, ферытавыя пласціны для запамінальных прыстасаванняў ЭВМ, дыяфрагмы электронна-прамянёвых прылад, керамічныя ізалятары, вырабы са звышцвёрдых сплаваў і інш. Лазерная рэзка вядзецца ў імпульсным і бесперапынным рэжыме, з падачай у зону рэзкі струменю газу (звычайна паветра або кіслароду). Выкарыстоўваецца для раздзялення дыэлектрычных і паўправадніковых падложак (таўшчынёй 0,3—1 мм), скрайбіравання паўправадніковых пласцін, рэзання крохкіх вырабаў са шкла, сіталу і пад. (метадам тэрмічнага расколвання) і інш. Фігурная апрацоўка паверхні — стварэнне мікрарэльефа на матэрыялах выпарэннем, тэрмаапрацоўкай, акісляльна-аднаўляльнымі і інш рэакцыямі, выкліканымі награваннем, тэрмастымуляванымі дыфузійнымі працэсамі. Выкарыстоўваецца ў мікраэлектроніцы, паліграфічнай прам-сці, пры апрацоўцы цвёрдых сплаваў, ювелірных камянёў і інш. У электроннай тэхніцы перспектыўныя кірункі Л.т.: паверхневы адпал паўправадніковых пласцін з мэтай узнаўлення структуры іх крышталічнай рашоткі пры іонным легіраванні, стварэнне актыўных структур на паверхні паўправаднікоў, атрыманне p-n-пераходаў метадам лакальнай дыфузіі з лазерным нагрэвам, нанясенне тонкіх метал. і дыэл. плёнак лазерным выпарэннем і інш. У фоталітаграфіі Л.т. выкарыстоўваюцца для вырабу звышмініяцюрных друкарскіх плат, інтэгральных схем, відарысаў і інш. элементаў мікраэлектроннай тэхнікі; у хім. і мікрабіял. вытв-сці — для селектыўнага стымулявання хім. і біял. актыўнасці малекул; у медыцыне — для лячэння скурных захворванняў, язваў страўніка, кішэчніка і інш. Магутныя (ад 1 кВт і вышэй) лазеры выкарыстоўваюцца для рэзкі і зваркі тоўстых стальных лістоў, паверхневай загартоўкі, наплаўлення і легіравання буйнагабарытных дэталей, ачысткі будынкаў ад паверхневых забруджванняў, рэзкі мармуру, граніту, раскрою тканіны, скуры і інш.

На Беларусі распрацоўкі па Л.т. вядуцца ў ін-тах Нац. АН (фізікі, малекулярнай і атамнай фізікі, фізіка-тэхнічным, прыкладной фізікі, фотабіялогіі і інш.), Ін-це прыкладных фіз. праблем БДУ, Гомельскім ун-це, у шэрагу галіновых НДІ.

Літ.:

Лазерная и электронно-лучевая обработка материалов. М., 1985;

Дьюли У. Лазерная технология и анализ материалов: Пер. с англ. М., 1986;

Промышленное применение лазеров: Пер. с англ. М., 1988.

В.В.Валяўка, В.К.Паўленка.

Да арт. Лазерная тэхналогія. А Схема лазернай рэзкі з тэлекантролем працэсу. 1 — дэталь, якая апрацоўваецца; 2 — прыстасаванне факусіроўкі лазернага праменя; 3 — лазер; 4 — замкнёная тэлевізійная сістэма; 5 — дысплей. Б. Схема станка з рубінавым лазерам для святлопрамянёвай апрацоўкі: 1 — імпульсная лямпа; 2 — кандэнсатар; 3 — паралельныя люстэркі; 4 — штучны рубін; 5 — лінза; 6 — выраб, які апрацоўваецца.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)