БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУРАКІ́ (Beta),

род адна-, двух- і шматгадовых травяністых раслін сям. лебядовых. 6 відаў (па іншых звестках 15). Пашыраны ў Зах. Еўропе, Міжземнамор’і, Зах. Азіі, Індыі, вырошчваюць таксама ў Паўн. і Паўд. Амерыцы, Паўн. Афрыцы, Аўстраліі. У культуры двухгадовыя віды: буракі лісцевыя, ці мангольд, і буракі звычайныя караняплодныя (B. vulgaris), да якіх належаць групы разнавіднасцей цукр., сталовых і кармавых буракоў. Пачалі спажываць карані буракоў у 3—1 ст. да н.э. У канцы 12 ст. з’явіліся ў культуры кармавыя формы, у 18—19 ст. — цукровыя. На Беларусі буракі ў культуры з 1830-х г.

У 1-ы год буракі ўтвараюць сакаўны мясісты караняплод з разеткай лісця, на 2-і даюць кветаносы і насенне. Сцябло травяністае, прамастойнае, галінастае, паяўляецца на 2-і год. Лісце буйное, гладкае або хвалістае, прыкаранёвае на доўгіх чаранках, сцябловае амаль сядзячае. Кветкі двухполыя, зялёныя ці белаватыя. Плады пры выспяванні зрастаюцца, утвараючы суплоддзі — клубочкі.

Сталовыя буракі (агароднінныя) культывуюцца ў 2 формах: сталовыя караняплодныя (больш пашыраныя) і буракі лісцевыя (мангольд). Караняплоды масай 0,4—0,9 кг, цёмна-чырвоныя, бардовыя, чырвона-фіялетавыя, багатыя цукрам (9—16%), бялком (1,8—3%), мінер. солямі, арган. к-тамі, клятчаткай, вітамінамі C, групы B, P, PP. Спажываюцца караняплоды і лісце вараныя, кансерваваныя, сушаныя. Лепшыя для іх глебы на Беларусі — акультураныя дзярнова-падзолістыя і тарфяна-балотныя. Раянаваныя сарты: Бардо 237, Холадаўстойлівыя 19, Пушкінскія К-18. Кармавыя буракі багатыя вугляводамі, мінер. солямі, вітамінамі. Караняплоды масай да 10—12 кг, жоўтыя, белыя, чырвоныя. Скормліваюцца ўсім відам жывёлы, пераважна малочным. Бацвінне ідзе на корм свежае і сіласаванае. Сеюць на акультураных тарфяніках, на сугліністых і супясчаных мінер. глебах з нейтральнай рэакцыяй глебавага раствору. Раянаваныя сарты: Бел. чырвоныя, Экендорфскія жоўтыя і інш. Цукровыя буракі — найважнейшая тэхн. культура — сыравіна для цукр. прам-сці. Маюць белыя караняплоды масай 400—500 г, багатыя цукрам (19—20%, макс. да 23%). Цепла- і святлолюбівыя, вельмі патрабавальныя да ўмоў жыўлення і вільгаці, асабліва ў перыяд фарміравання лісця і караняплода (ліп.жн.). Вырошчваюцца на добра ўгноеных сугліністых і супясчаных дзярнова-падзолістых глебах, на акультураных тарфяна-балотных. Бацвінне, жамерыны, патака ідуць на корм. Гл. таксама Буракаводства.

У.П.Пярэднеў.

т. 3, с. 343

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРО́НЗА (франц. bronze),

1) у тэхніцы — сплаў на аснове медзі, у якім асн. дабаўкамі з’яўляюцца волава, алюміній, берылій, крэмній, свінец, хром і інш. элементы, за выключэннем цынку (яго сплаў з меддзю наз. латунь) і нікелю (медна-нікелевы сплаў). Адпаведна бронза называецца алавянай, алюмініевай і г.д. Бронза мае значную трываласць, пластычнасць, цвёрдасць, высокія антыкаразійныя і антыфрыкцыйныя ўласцівасці.

Алавяная бронза мае да 11% волава і невялікія дабаўкі цынку, свінцу, фосфару, нікелю. Вызначаецца малым каэф. трэння па сталі. З яе робяць рабочы слой падшыпнікаў слізгання і антыкаразійную арматуру. Алюмініевая бронза мае 11% алюмінію і дабаўкі жалеза, нікелю і марганцу, якія павялічваюць трываласць сплаву. Устойлівая да сернай і большасці арган. кіслот. З яе робяць стужкі, палосы на спружыны, пруткі, трубы і фасонныя адліўкі. Берыліевая бронза мае да 2,4% берылію. Ідзе на выраб мембран, спружын, кантактаў, шасцерняў. Крэмніевая бронза мае 1—3% крэмнію, а таксама нікель, цынк, свінец, марганец. Вызначаецца высокімі мех. характарыстыкамі, антыфрыкцыйнымі ўласцівасцямі, добра зварваецца, паяецца і апрацоўваецца рэзаннем. З яе робяць пруткі, стужкі, сеткі, рашоткі, электроды. Марганцавая бронза вызначаецца павышанай каразійнай устойлівасцю, гарачатрываласцю. Свінцовістая бронза можа мець да 60% свінцу. Ёю ўкрываюць (тонкім слоем) укладышы і ўтулкі, якія працуюць у рэжыме слізгання. Хромістая бронза вызначаецца высокай электра- і цеплаправоднасцю. Ідзе на выраб калектараў эл. рухавікоў, электродаў.

2) У мастацтве — адзін з найб. пашыраных матэрыялаў для дэкар.-прыкладных вырабаў і скульптуры. Ліццё з алавянай бронзы (сплаў медзі з волавам, часам з дадаткамі інш. металаў) дае магчымасць з макс. дакладнасцю ўзнаўляць найдрабнейшыя дэталі мадэлі. Добра паддаецца апрацоўцы (чаканцы, паліроўцы, таніроўцы). Матэрыял пластычна вельмі выразны, на паверхні скульптуры (манум., дэкар., станковай) стварае своеасаблівыя святлоценявыя эфекты. Пад дзеяннем атм. з’яў набывае спецыфічныя адценні (паціну).

Вырабы з бронзы вядомы ў мастацтве Месапатаміі (3-е тыс. да н.э.), Стараж. Егіпта (2-е тыс. да н.э.); час росквіту — эпоха італьян. Адраджэння. З 17 ст. маст. ліццё з бронзы пашырана ў Францыі. Вядомыя творы з бронзы ў бел. мастацтве: помнікі Я.Коласу (1972, скульпт. З.Азгур), Я.Купалу (1972, А.Анікейчык, Л.Гумілеўскі, А.Заспіцкі), М.Багдановічу (1981, С.Вакар) у Мінску, Ф.Скарыне (1974, А.Глебаў) у Полацку, С.Буднаму (1980, С.Гарбунова) у Нясвіжы і інш.

т. 3, с. 260

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛЮМІ́НІЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць алюміній, пераважна ў ступені акіслення + 3. Бясколерныя, белыя ці шэрыя цвёрдыя рэчывы. Найб. пашыраны алюмінію злучэнні з кіслародам (крышт. алюмінію аксід і аморфны алюмагель, гідраксід алюмінію), солі алюмінію з моцнымі кіслотамі (нітрат, сульфат, галагеніды, фасфаты), комплексныя солі алюмінію (алюмініевы галын, алюмасілікаты), солі алюмініевых кіслот (алюмінаты), алюмінійарган. злучэнні (гл. ў арт. Металаарганічныя злучэнні), нітрыд і гідрыд алюмінію, алюмінію злучэнні з некаторымі больш электрададатнымі, чым алюміній, металамі, напр. арсенід алюмінію.

Алюмінію гідраксід (Al(OH)3] сустракаецца ў прыродзе ў выглядзе мінералаў — састаўная частка баксітаў, існуе ў трох крышт. і аморфнай мадыфікацыях; не раствараецца ў вадзе, спіртах; амфатэрны, з кіслотамі ўтварае солі, са шчолачамі алюмінаты. Атрымліваюць гідролізам алюмасілікатаў у шчолачным асяроддзі, аморфны — асаджэннем з раствораў соляў алюмінію аміякам. Выкарыстоўваюць для вытв-сці аксіду алюмінію і алюмагелю, як адсарбцыйны сродак у медыцыне. Алюмінію сульфат [Al2(SO4)3], т-ра раскладання больш за 770 °C, раствараецца ў вадзе. Атрымліваецца ўзаемадзеяннем кааліну ці баксіту з сернай кіслатой. Выкарыстоўваюць у вытв-сці алюмініевага галыну, для праклейвання паперы, асвятлення і пазбаўлення колеру вады, як пратраву пры фарбаванні тканін. Алюмінію фтарыд (AlF3), т-ра ўзгонкі 1279 °C, раствараецца ў вадзе, утварае крышталегідраты. Кампанент электраліту ў вытв-сці алюмінію, таксама флюсаў, эмаляў, керамікі. Алюмінію хларыд (AlCl3), дыміць на паветры, т-ра ўзгонкі 180 °C, tпл 192,5 °C, у вадзе гідралізуецца. Атрымліваецца хларыраваннем кааліну, баксіту ці гліназёму. Каталізатар крэкінгу нафты, у рэакцыях алкіліравання. Алюмінію нітрыд (AlN), т-ра раскладання ~2000 °C, дыэлектрык, устойлівы да дзеяння кіслот і шчолачаў пры t 20 °C. Атрымліваюць узаемадзеяннем азоту з алюмініем пры t 1000 °C ці аднаўленнем аксіду алюмінію. Выкарыстоўваецца як вогнетрывалы матэрыял для тыгляў, футровак электролізных ваннаў, для нанясення каразійна- і зносаўстойлівых пакрыццяў на сталь, графіт і інш. Алюмінію гідрыд (AlH3), т-ра раскладання 105 °C, існуе ў палімерным стане. Выкарыстоўваецца як кампанент цвёрдага ракетнага паліва, аднаўляльнік у арган. Сінтэзе. Алюмінію арсенід (AlAs), т-ра плаўлення 1740 °C, кампанент паўправадніковых цвёрдых раствораў для лазераў, фотадыёдаў, сонечных батарэй.

Л.М.Скрыпнічэнка.

т. 1, с. 292

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАБРУ́ДЖВАННЕ ВОД,

працэс змены складу і ўласцівасцей вады, абумоўлены паступленнем у водныя аб’екты забруджвальнікаў, якія робяць воды непрыдатнымі для водакарыстання, пагаршаюць умовы пражывання жывых арганізмаў. Адрозніваюць прыроднае (натуральнае) З.в. і забруджванне антрапагеннае. Прыроднае З.в. выклікаецца паводкамі, размывам берагоў, забруджанымі атм. ападкамі, рэчывамі, што вымываюцца з глебы. Некат. газападобныя рэчывы выкідваюцца ў атмасферу, а потым з ападкамі трапляюць у водныя аб’екты. Антрапагеннае З.в. абумоўлена паступленнем у вадаёмы прадуктаў, што выкідваюцца ў асяроддзе ў выніку бытавой, с.-г., прамысл. і інш. гасп. дзейнасці чалавека. Асн. крыніцы такога З.в.: воды сцёкавыя шахтаў, руднікоў, нафтапромыслаў, адходы хім. прам-сці, драўніны пры яе нарыхтоўцы, апрацоўцы і сплаве, апрацоўкі некат. с.-г. тэхн. культур, скіды воднага і чыг. транспарту і інш. Вылучаюць З.в. біял. (мікраарганізмы і здольныя да браджэння арган. рэчывы), хім. (таксічныя або рэчывы, якія змяняюць склад воднага асяроддзя), фіз. (награванне, радыеактыўнасць і інш.).

Першасныя змены З.в. узнікаюць ад непасрэднага ўздзеяння забруджвальнікаў на водныя аб’екты і ўплываюць на фіз.-хім. і біял. якасці вады, яе склад, т-ру, газавы рэжым і інш. ўмовы пражывання гідрабіёнтаў. У выніку другасных змен (пры ўзаемадзеянні забруджвальных рэчываў паміж сабой, з вадой ці інш. прыроднымі рэчывамі) утвараюцца новыя рэчывы, якія адмоўна ўплываюць на водныя арганізмы, узмацняюць або аслабляюць працяканне біяхім. працэсаў, змяняюць працэсы самаачышчэння і мінералізацыі вады і інш. Вынік — пагаршэнне гідрахім. рэжыму і ўмоў пражывання водных арганізмаў, немагчымасць выкарыстання вады для пітных, культурна-бытавых мэт, тэхн. водазабеспячэння. Трацічныя змены парушаюць складаны комплекс узаемасувязей гідрабіёнтаў з навакольным асяроддзем і ўзаемаадносіны паміж арганізмамі вадаёма, агульны жыццёвы цыкл іх развіцця. Назіраецца распад біяцэнозаў, паніжаецца біял. прадукцыйнасць вадаёмаў, знішчаюцца рыбныя запасы. Штогадовы знос з сушы ў воднае асяроддзе рэчываў пад уздзеяннем антрапагенных фактараў ацэньваецца ў 50 млрд. т.

На Беларусі ў рэкі скідваецца некалькі кубічных кіламетраў сцёкаў за год (найб. аб’ём забруджвальнікаў даюць нафтахім. і харч. прам-сць, электраэнергетыка), што вядзе да забруджвання вод нітратамі, засалення адходамі калійнай вытв-сці. Найб. аб’ёмы сцёкаў паступаюць у бас. рэк Зах. Дзвіна і Бярэзіна (бас. Дняпра). Гал. задача аховы водаў — папярэджанне З.>в. і ліквідацыя яго крыніц.

Я.В.Малашэвіч.

т. 6, с. 490

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПС (ад грэч. gypsos мел, вапна),

1) мінерал класа сульфатаў, CaSO4·2H2O. У чыстым выглядзе мае 32,6% аксіду кальцыю CaO, 46,5% сернага ангідрыду SO3 і 20,9% вады H2O. Механічныя прымесі пераважна ў выглядзе гліністых і арган. рэчываў, сульфідаў і інш. Крышталізуецца ў манакліннай сінганіі. Крышталі таблітчастыя, радзей слупкаватыя або прызматычныя, часта ўтвараюць двайнікі («ластаўчын хвост»). Агрэгаты зярністыя, ліставатыя, парашкападобныя, канкрэцыі, валокны, іголкі, друзы. Афарбоўка ў залежнасці ад прымесей — ад бясколернай і белай да шэрай, жоўтай, чырвонай, ружовай, бурай і чорнай. Бляск шкляны. Цв. 1,5—2. Крохкі. Шчыльн. 2,3 г/см³. У вадзе прыкметна растваральны (20,5 г/л пры 20 °C). Па паходжанні хемагенны, радзей гідратэрмальны. Разнавіднасці: селеніт (валакністы гіпс), гіпсавы шпат (пласцінкавы гіпс) і інш. Выкарыстоўваецца ў цэментнай прам-сці, буд-ве, медыцыне, папяровай вытв-сці.

2) Асадкавая горная парода, якая складаецца пераважна з мінералу гіпсу і прымесей даламіту, ангідрыту, цэлесціну, гідраксідаў жалеза, серы, кальцыту і інш. Паводле ўмоў утварэння адрозніваюць радовішчы гіпсу пярвічныя, што ўтварыліся ў лагунах ці азёрах, і другасныя, што ўзніклі пры выветрыванні (гідратацыі ангідрытаў), радовішчы вышчалочвання («гіпсавы капялюш»), метасаматычныя і інш. Прамысл. значэнне маюць пярвічныя лагунныя радовішчы гіпсу. На Беларусі да такіх належыць Брынёўскае радовішча гіпсу.

Гіпс будаўнічы, алебастр, вяжучы матэрыял паветранага цвярдзення, 2CaSO4·H2O. Выкарыстоўваюць пераважна для ўнутр. апрацоўчых работ.

Гіпс у скульптуры і архітэктуры, адзін з гал. матэрыялаў скульптуры. Выкарыстоўваецца для стварэння рабочых мадэлей, якія потым павялічваюць да памераў скульптуры, а таксама для вырабу пустых формаў пры адліўцы копій, тоесных арыгіналаў, пераходных мадэлей скульптур для пераводу іх у іншыя матэрыялы, пры рэпрадуктаванні ўзораў сусв. скульптуры для музеяў, інтэр’ераў грамадскіх будынкаў. Вядомы з часоў Стараж. Егіпта, Грэцыі, Рыма.

На Беларусі як матэрыял станковай скульптуры пашырыўся ў 19 ст. У гіпсе выкананы барэльеф Т.Зана (Р.Слізень, 1-я пал. 19 ст.), «Алегорыя скульптуры» К.Ельскага (1858), бюст Т.Касцюшкі (Я.Астроўскі, 1860), партрэты М.Багдановіча (А.Грубэ, 1927) і інш.

Літ.:

Одноралов Н.В. Скульптура и скульптурные материалы. 2 изд. М., 1982.

У.Я.Бардон, І.М.Каранеўская (у скульптуры і архітэктуры).

т. 5, с. 259

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАМА́ДСКАЯ СВЯДО́МАСЦЬ,

сукупнасць уяўленняў, поглядаў, навук. тэорый аб чалавеку і навакольным свеце (натуральным і штучным), аб іх мінулым, сённяшнім і будучым. Не зводзіцца да арыфм. сумы індывід. свядомасцей членаў грамадства, а ўтварае арган. цэласнасць са сваімі спецыфічнымі ўласцівасцямі: грамадскім статусам і заканамернасцямі развіцця, прызначэннем і функцыямі. Грамадская свядомасць узаемадзейнічае з інш. сферамі грамадскага жыцця (вытв-сцю матэрыяльных даброт, сям’ёй і г.д.), а таксама ўплывае на асабістае жыццё індывідаў і іх паводзіны ў грамадстве. Грамадская свядомасць утварае з інш. грамадскімі з’явамі адзіную непарыўную тканіну, але пры гэтым адносна самастойная ў працэсе рэалізацыі сваёй грамадскай ролі і функцый. Грамадская свядомасць не тоесная пасіўнаму адлюстраванню таго, што адбываецца ў іншых сферах грамадства, і адыгрывае значную актыўную ролю. Аднак сама гэтая актыўнасць па-рознаму вытлумачваецца ў розных сістэмах філас.-гіст. ведаў. Калі ў ідэалістычных вучэннях ёй надаецца абсалютна самаст., субстанцыянальнае значэнне (чалавечы розум творыць навакольны свет), то паводле матэрыялістычных канцэпцый яна ёсць неабходны, але зусім не самадастатковы момант функцыянавання адзінага сац. цэлага. Матэрыялізм зыходзіць з таго, што грамадская свядомасць дыялектычна адлюстроўвае грамадскае быццё і абумоўлена ім; гэты вывад пакладзены ў аснову матэрыяліст. тэорыі пазнання. Грамадская свядомасць мае складаную ўнутр. структуру, якая ўключае розныя ўзроўні (тэарэт. і звычайная свядомасць, ідэалогія і грамадская псіхалогія) і розныя формы свядомасці (паліт. і прававая свядомасць, мараль, рэлігія, мастацтва, філасофія, навука). У сучасным грамадстве асаблівае значэнне набывае здольнасць грамадскай свядомасці мысленна апераджаць рэальны рух гіст. працэсу, што знаходзіць сваё выяўленне ў функцыі сацыяльнага прадбачання. Дасягнуты крытычны ўзровень спажывання прыродных рэсурсаў і забруджвання навакольнага асяроддзя пры крайне нераўнамерным размеркаванні, матэрыяльных даброт, якія атрымліваюцца ад гэтага, абвастрэнне многіх іншых глабальных праблем сучаснасці востра ставяць перад ім пытанне пра выжыванне. Таму павелічэнне ролі грамадскай свядомасці ў жыцці грамадства на мяжы 20 і 21 ст. звязваецца з праблемамі, ад вырашэння якіх залежыць лёс чалавецтва.

Літ.:

Общественное сознание и его формы. М., 1986;

Жуков Н.И. Проблема сознания. Мн., 1987;

Тойнби А.Дж. Постижение истории: Пер. с англ. М., [1990);

Сорокин П.А. Человек. Цивилизация. Общество. М., 1992.

В.І.Боўш.

т. 5, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НАЦЫЯНА́ЛЬНАЙ АКАДЭ́МІІ НАВУ́К БЕЛАРУ́СІ БУДЫ́НКІ,

комплекс навукова-даследчых устаноў, будынкаў адм., гасп. і вытв. прызначэння ў Мінску. Стварэнне комплексу пачалося ў 1931—32 у паўн.-ўсх. частцы горада паводле праекта Г.Лаўрова. У аснове кампазіцыйнага вырашэння сістэма паасобных павільёнаў і карпусоў для НДІ. Першым пабудаваны 3-павярховы лабараторны корпус, павернуты гал. фасадам да гар. магістралі (цяпер Скарыны праспект). У 1934—35 праектаванне і вядзенне буд-ва ажыццяўляў арх. І.Лангбард, які, пакінуўшы першапачатковую планіроўку карпусоў, змяніў іх аб’ёмнапрасторавую кампазіцыю. Разгорнутыя пад прамым вуглом паасобныя аб’ёмы былі аб’яднаны агульным вестыбюлем з параднай 3-маршавай лесвіцай, 2-радовая каланада, пастаўленая перад ім, утварыла гал. корпус (завершаны ў 1939), надала яму ўрачыстую манументальнасць. У Вял. Айч. вайну гал. корпус пашкоджаны, у 1949 адноўлены; стаў адным з планіровачных вузлоў у забудове праспекта Скарыны. У 1960—70-я г створаны комплекс будынкаў у квартале паміж вуліцамі Сурганава і Акадэмічнай: 4—5-павярховыя карпусы ін-таў фізікі і фізіка-арган. хіміі (арх. А.Іваноў), матэматыкі (арх. А.А.Воінаў), агульнай і неарган. хіміі (арх. Г.Бенядзіктаў), фотабіялогіі, заалогіі, СКБ Ін-та фізікі (арх. А.А.Воінаў), Цэнтр. навук. б-кі імя Я.Коласа (арх. Э.Гальдштэйн).

На сумежных вуліцах узведзены будынкі ін-таў тэхн. кібернетыкі (арх. А.Беразоўскі, Ю.Грыгор’еў), фізікі цвёрдага цела і паўправаднікоў (А.Шчусеў) і інш. Да гал. корпуса з боку вул. Акадэмічнай прыбудаваны корпус прэзідыума (цяпер Ін-т гісторыі; 1964, арх. Н.Аладава, В Ладыгіна). У 1977 завершана буд-ва двух 14-павярховых карпусоў уздоўж вуліц Сурганава і Акадэмічнай, павернутых пад вуглом адзін да аднаго і аб’яднаных аб’ёмам канферэнц-залаў і Музеем стараж.-бел. культуры Ін-та мастацтвазнаўства, этнаграфіі і фальклору імя К.Крапівы (арх. А.Духан, А.Красоўскі, Л.Хаюцін). З 1972 вядзецца буд-ва новага акадэмгарадка па вул. Жодзінскай (праект ін-та «Белдзяржпраект») на тэр. 310 га. Ён будзе складацца з адм.-грамадскага цэнтра, навук.-вытв. і жылой зон. Комплексы ўключаюць 2—3 групы, у кожнай па 4 будынкі рознага функцыян. прызначэння, аб’яднаныя паміж сабой пераходамі. Узведзены (1983) карпусы ін-таў фізікатэхн. і мікрабіялогіі (арх. В.Малышаў, А.Пецярбуржцаў, Я.Яснагародскі), геафізікі і геахіміі (арх. М.Вінаградаў, Г.Гераўкер, Б.Папоў) і інш. Іл. гл. да арт. МІНСК.

С.А.Сергачоў.

т. 11, с. 226

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛЕ́ЙНА-ТЛУ́ШЧАВАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна харчовай прамысловасці, вытв-сць раслінных алеяў, маргарыну, маянэзу, кулінарнага тлушчу, пакосту, гліцэрыну, гасп. мыла, мыйных сродкаў на тлушчавай аснове, а таксама гідрагенізацыя і расшчапленне тлушчу.

У старажытнасці выраблялі аліўкавы і пальмавы алей, які лёгка выдзяляецца пры невял. ціску. У пач. 19 ст. пашырыўся прэсавы метад, у 1856 вынайдзены больш эфектыўны экстракцыйны метад з выкарыстаннем арган. растваральнікаў алею (бензіну, дыхлорэтану). Вырабляецца соевы, пальмавы (з пладоў алейнай і какосавай пальмаў), сланечнікавы, рапсавы, бавоўнікавы, ільняны, гарчычны, кукурузны, арахісавы, аліўкавы, тунгавы, рыцынавы, абляпіхавы і інш. алей (гл. Алейныя культуры). Сусветны выраб за год больш за 90 млн. т (1986), больш як палова яго — харчовы. Найбуйнейшыя вытворцы: ЗША, Бразілія, Мексіка (соевы алей); Кітай, Індыя, Германія, Канада (рапсавы); Аргенціна, Расія, Германія, Украіна (сланечнікавы); Іспанія, Італія, Партугалія (аліўкавы); Малайзія, Інданезія, Нігерыя, Калумбія (пальмавы).

Вытворчасць алею на Беларусі вядома з ранняга сярэднявечча. Выціскалі з насення лёну і канопляў. Галіна алейна-тлушчавай прамысловасці ўзнікла ў сярэдзіне 19 ст. спачатку на мясц. сыравіне, потым — на прывазной. У 1913 дзейнічала 6 цэнзавых алейных, 5 мылаварных і 2 стэарынавыя з-ды. У 1931 пабудаваны маслабойны завод у Віцебску, у 1932 — маргарынавы ў Гомелі (з 1935 — тлушчавы камбінат), у 1939 дзейнічалі Баранавіцкі і Глыбоцкі маслабойныя з-ды; у 1940 наладжаны выраб пакосту (Віцебск). Пасля Вял. Айч. вайны аднавілі работу Бабруйскі і Баранавіцкі маслабойныя з-ды, Гомельскі тлушчавы камбінат. У 1951 пабудаваны Мінскі маргарынавы завод. Рэканструяваны Бабруйскі маслабойны з-д. На Віцебскім маслабойным з-дзе пушчаны экстракцыйны цэх. У 1991 уведзены ў строй маслабойны цэх у калгасе «Новы быт» (Мінскі р-н). Працуюць (1995): Віцебскі алейнаэкстракцыйны завод, Гомельскі тлушчавы камбінат, Мінскі маргарынавы завод, Бабруйскі алейны з-д, алейны цэх у калгасе «Новы быт». Выраб алею ў 1994 склаў 5,2 тыс. т (найб. аб’ём вытв-сці ў 1990 — 26,4 тыс. т), маргарынавай прадукцыі 19,2 тыс. т (найб. аб’ём у 1987—127,7 тыс. т). Адходы алейна-тлушчавай в. ідуць на корм жывёле (гл. Макуха, Шрот). Алей для спажывання і далейшай перапрацоўкі завозіцца на Беларусь з Украіны, Малдовы, Расіі, Германіі, Польшчы (129,2 тыс. т, 1990; 44,3 тыс. т, 1994); сыравіна для алейна-тлушчавай прамысловасці — з Польшчы і Германіі.

Т.Н.Жданоўская, Г.П.Астапенка.

т. 1, с. 237

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЖЫЦЦЁ,

асобая форма існавання і руху матэрыі, здольная да развіцця (эвалюцыі) і якасна больш высокая, чым фіз. і хім. формы; асн. матыў існавання і змест перажывання чалавека, жыццёвы лёс наогул. Характарызуецца абменам рэчываў, раздражняльнасцю, самааднаўленнем, сістэмным самакіраваннем, перадачай энергіі і інфармацыі, прыстасаванасцю да ўмоў асяроддзя(адаптацыяй), а таксама адноснай самастойнасцю надарганізменных утварэнняў (біягеацэнозаў, экасістэм) пры агульным фізіка-хім. адзінстве жывога рэчыва біясферы Зямлі (магчыма, і ўсяго Сусвету). Існуюць розныя канцэпцыі паходжання і сутнасці Ж. Прыхільнікі крэацыянізму прызнаюць аднаактавае стварэнне арганізмаў Богам або шматлікія акты стварэння ўсё больш дасканалых форм Ж. пасля знішчэння папярэдніх у выніку «катаклізмаў». Тэорыя самаадвольнага і спантаннага зараджэння Ж. была пашырана ў Стараж. Кітаі (Канфуцый), Вавілоне і Егіпце. Віталізм, які абапіраецца на вучэнне Арыстоцеля аб энтэлехіі, растлумачвае працэсы Ж. дзеяннем нематэрыяльнай «энергіі душы», «жыццёвай сілы» або «жыццёвага парыву». Тэорыя біяхім. эвалюцыі прапануе сваю ўсеагульную схему ўзнікнення Ж. ў выніку працяглых пераўтварэнняў вугляродазмяшчальных злучэнняў, пераходу ад складаных арган. рэчываў да простых жывых арганізмаў; паводле палеанталагічных звестак, першыя жывыя арганізмы (аднаклетачныя) з’явіліся на Зямлі не менш як 3,5—3,8 млрд. гадоў назад. На глебе метафізічнага матэрыялізму распрацоўваліся канцэпцыі пра занясенне зародкаў жыцця на Зямлю з космасу (панспермія) і аб спрадвечным паралельным існаванні жывой і нежывой матэрыі. Франц. філосаф А.Бергсон разглядаў Ж. як працэс чалавечага быцця і ўяўляў яго ў форме зыходнага «ўзрыву», які прывёў да разгортвання жыццёвага працэсу; пры гэтым у якасці 2 асн. форм Ж. і пазнання ён вылучаў інтэлект і інтуіцыю. З псіхааналітычнага пункту погляду Ж. ўяўляе сабой узаемадзеянне структурных элементаў псіхікі, жыццядзейнасці індывіда і асаблівасцей навакольнага асяроддзя. На думку З.Фрэйда і Л.Шапенгаўэра, «сапраўдным вынікам» і мэтай Ж. з’яўляецца дасягненне смерці, а сексуальныя схільнасці, якія ўзнаўляюць папярэднія станы праз зліццё дзвюх зародкавых клетак, ёсць увасабленне волі да Ж. Ідэі аб Ж. як рэдкай разнавіднасці смерці ляжаць у аснове канцэпцыі постструктуралізму, прадстаўнікі якога не проціпастаўляюць Ж. смерці, а ўводзяць іх у адносіны невырашальнай узаемаабарачальнасці. Гл. таксама Абіягенез, Гамеастаз, Дарвінізм, Філасофія жыцця.

Літ.:

Вернадский В.И. Живое вещество. М., 1978;

Фролов И.Т. О смысле жизни, о смерти и бессмертии человека. М., 1985;

Зеленков А.И., Водопьянов П.А. Динамика биосферы и социокультурные традиции. Мн., 1987;

Стереотипы и динамика мышления. Мн., 1993.

С.Ф.Дубянецкі.

т. 6, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)