КУМАМО́ТА,

горад у Японіі, у цэнтр. частцы в-ва Кюсю. Адм. ц. прэфектуры Кумамота. 636 тыс. ж. (1992). Вузел чыгунак і аўтадарог. Аэрапорт. Порт К. — Місумі. Прам-сць: с.-г. і эл. машынабудаванне, авіябудаванне, харч., тэкст., хім., дрэваапрацоўчая. Саматужная вытв-сць тканін і фарфору. Ун-т. Арх. помнікі: феад. замак (16 ст.), будысцкія храмы (у т.л. 15—16 ст.). Турыстычны цэнтр.

т. 9, с. 19

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НО́КСВІЛ (Knoxville),

горад на ПдУ ЗША, у штаце Тэнесі. Засн. ў 1786. 167,5 тыс. ж., каля 500 тыс. ж. з прыгарадамі (1996). Вузел чыгунак і аўтадарог. Порт на р. Тэнесі. Прам-сць: маш.-буд. (вытв-сць буд. машын, рачных суднаў, кантрольна-вымяральных прылад), швейная, харч., хім., электраметалургічная, металаапрацоўчая. Ун-т. У прыгарадах — буйныя ГЭС і ЦЭС, алюмініевы і атамны камбінаты.

т. 11, с. 375

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЬЮ́АРК (Newark),

горад на ПнУ ЗША, у штаце Нью-Джэрсі, зах. прыгарад Нью-Йорка. Засн. ў 1666. 268,5 тыс. ж., з г. Элізабет і агульнымі прыгарадамі каля 2 млн. ж. (1998). Трансп. вузел. Марскі порт у бухце Ньюарк. Міжнар. аэрапорт. Прам-сць: хім., харчасмакавая, у т.л. лікёра-гарэлачная; эл.-тэхн., прыладабуд., металаапр., металургічная, гарбарна-абутковая, швейная. 5 ун-таў і каледжаў.

т. 11, с. 393

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАГЛЫНА́ННЯ ПАКА́ЗЧЫК,

фізічная велічыня, адваротная адлегласці, на якой паток выпрамянення, што ўтварае паралельны светлавы пучок, аслабляецца ў выніку паглынання ў асяроддзі ў e разоў (натуральны П.п.; гл. Бугера—Ламберта—Бэра закон) ці 10 разоў (дзесятковы П.п.). Залежыць ад частаты святла, хім. прыроды і стану рэчыва.

Адзінка П.п. у СІ метр у мінус першай ступені (м−1). Гл. таксама Паглынанне святла.

т. 11, с. 477

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЫБІЁТЫКІ (ад анты... + грэч. bios жыцце),

арганічныя рэчывы, што ўтвараюцца ў мікраарганізмах і ў невял. дозах прыгнечваюць жыццядзейнасць інш. мікраарганізмаў, вірусаў і клетак. Да антыбіётыкаў адносяць таксама раслінныя (фітанцыды) і жывёльнага паходжання рэчывы з антымікробным дзеяннем. Вядома каля 4 тыс. антыбіётыкаў, у мед. практыцы выкарыстоўваецца каля 60 (першы клінічна эфектыўны антыбіётык пеніцылін адкрыты англ. мікрабіёлагам А.Флемінгам у 1929).

Паводле хім. прыроды антыбіётыкі належаць да розных груп злучэнняў: вугляродзмяшчальныя (неаміцын, канаміцын, стрэптаміцын, амінагліказіды і інш., антыбіётыкі групы рыстаміцыну — ванкаміцын), макрацыклічныя лактоны (эрытраміцын, алеандаміцын, паліены), хіноны і блізкія да іх рэчывы (тэтрацыкліны, антрацыкліны), пептыды і пепталіды (пеніцыліны, інтэрферон, граміцыдзін С, актынаміцыны) і інш. Паводле механізма дзеяння адрозніваюць антыбіётыкі, якія парушаюць сінтэз клетачных абалонак бактэрый (пеніцыліны і інш.), бялкоў (тэтрацыкліны, хлорамфенікол і інш.), нуклеінавых кіслот (проціпухлінныя антыбіётыкі — аліваміцын, рубаміцын, кармінаміцын і інш.), разбураюць цэласнасць цытаплазматычных мембран (паліены) і біяэнергет. працэсаў (граміцыдзін С). Антыбіётыкі могуць мець шырокі спектр дзеяння (уплываюць на грамдадатныя і грамадмоўныя бактэрыі, напр. тэтрацыкліны) і вузкі (актыўныя пераважна да грамдадатных мікробаў, напр. пеніцылін, рыфампіцын).

На лек. і гасп. мэты антыбіётыкі атрымліваюць гал. чынам мікрабіял. сінтэзам на аснове бактэрый і мікраскапічных грыбкоў (пераважна актынаміцэтаў), частку — хім. сінтэзам або хім. мадыфікацыяй прыродных антыбіётыкаў. Выкарыстоўваюць на лячэнне інфекц. хвароб чалавека, жывёл і раслін, для паскарэння росту і развіцця маладняку, як кансерванты, пры вывучэнні тонкіх механізмаў біяхім. пераўтварэнняў, праблем анкалогіі і функцыянавання жывых клетак.

Літ.:

Молекулярные основы действия антибиотиков: Пер. с англ. М., 1975;

Handbook of Antibiotic Compounds. Vol. 1—7. Boca — Batorn, 1980—81.

т. 1, с. 394

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙРАХІ́МІЯ (ад нейра... + хімія),

біяхімія нервовай сістэмы, раздзел біяхіміі, які вывучае хім. састаў нерв. тканкі, абмен рэчываў у ёй, хім. і малекулярна-клетачныя механізмы дзейнасці нерв. сістэмы. Цесна звязана з біяфізікай, малекулярнай біялогіяй, нейрафізіялогіяй, нейраэндакрыналогіяй, параўнальнай, узроставай і эвалюц. фізіялогіяй, цыта- і гістахіміяй. Мае вял. значэнне для нейрафармакалогіі, неўрапаталогіі, псіхіятрыі.

Узнікла ў 2-й пал. 19 ст. з пачаткам сістэм. даследавання хім. складу галаўнога мозга (А.Я.Данілеўскі, ням. вучоны Дж.Л.У.Тудыхум і інш.). У сярэдзіне 20 ст. сфарміравалася як самаст. кірунак. Уклад у развіццё Н. зрабілі Г.Х.Дэйл, Б.Кац, О.Лёві. Х.К.Хартлайн, сав. вучоныя А.У.Паладзін, Я.М.Крэпс, Г.Я.Уладзіміраў і інш. У складзе нерв. тканкі вылучаны шэраг складаных ліпідаў (гангліязіды, сфінгаміэліны, фасфатыды, цэрэбразіды і інш.), біялагічна актыўных рэчываў (медыятараў і нейрагармонаў), амінаў (адрэналін, ацэтылхалін, гістамін, норадрэналін, сератанін і інш.), пептыдаў (напр., эндарфіны, энкефаліны), амінакіслот і інш. Удакладняецца іх функцыян. роля, высвятляюцца метабалізм і механізмы дзеяння гэтых рэчываў, а таксама гармонаў, таксінаў, фармакалагічных прэпаратаў і інш. Вывучаюцца біяхім. асновы перадачы нерв. імпульсаў, нейратрафічных уплываў, узбуджэння, тармажэння, сну, памяці, навучання, работы рэцэптараў, індывід. развіцця мозга і інш.

На Беларусі Н. развіваецца з 1922 сумесна з нейрафізіялогіяй у ін-тах фізіялогіі і біяхіміі Нац. АН Беларусі, Бел. НДІ неўралогіі, нейрахірургіі і фізіятэрапіі, БДУ, Мінскім і Гродзенскім мед. ін-тах, Віцебскім мед. ун-це і Гомельскім ун-це.

Літ.:

Палладин А.В., Белик Я.В., Полякова Н.М. Белки головного мозга и их обмен. Киев, 1972;

Хухо Ф. Нейрохимия: Основы и принципы: Пер. с англ. М., 1990.

С.С.Ермакова.

т. 11, с. 274

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛЮМАСІЛІКА́ТЫ,

алюмакрэмніевыя солепадобныя злучэнні з катыёнамі шчолачных металаў, да якіх належыць вял. група пародаўтваральных мінералаў кл. сілікатаў. Прыродныя алюмасілікаты найчасцей маюць каркасную (артаклаз, мікраклін, альбіт) або слаістую (мінералы групы слюдаў) структуру; вядомы алюмасілікаты, якія трапляюцца сярод сілікатных мінералаў інш. структурна-хім. тыпаў (стужачнага — рагавая падманка, ланцужковага — аўгіт, астраўнога — кардыярыт). Да алюмасілікатаў належаць плагіяклазы, нефелін, лейцыт і інш. Пры выветрыванні алюмасілікатаў утвараюцца мінералы глін, гідраслюдаў, баксітаў. Найб. Пашыраныя алюмасілікаты — палявыя шпаты, слюды, цэаліты, хларыты і інш. Алюмасілікаты штучныя сінтэзуюць метадамі, якія імітуюць прыродныя геахім. працэсы. Практычнае значэнне маюць штучныя алюмасілікаты тыпу цэалітаў (малекулярныя сіты і пермутыты). Малекулярныя сіты атрымліваюць пры t 60—450 °C з раствору алюмінату натрыю і воднай суспензіі крэмніевай кіслаты з дабаўкай шчолачы, пермутыты — спяканнем кааліну, палявога шпату з кварцам і содай пры t 1000 °C. Штучныя алюмасілікаты выкарыстоўваюцца ў хім. прам-сці: малекулярныя сіты для працэсаў глыбокай асушкі, тонкай ачысткі і раздзялення газаў, у храматаграфічным аналізе газаў і вадкасцяў; пермутыты для змяншэння жорсткасці вады.

т. 1, с. 290

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКУМУЛЯ́ЦЫЯ ЗАБРУ́ДЖВАЛЬНЫХ РЭ́ЧЫВАЎ у арганізмах,

назапашванне ў жывых істотах хім. рэчываў, якія забруджваюць навакольнае асяроддзе. Месцам акумуляцыі могуць быць розныя органы і тканкі, пры гэтым многія з забруджвальнікаў (асабліва біягеннага паходжання) здольныя паступова часткова ці цалкам утылізавацца праз уключэнне ў біяхім. цыклы арганізма; у такім выпадку шкоднасць іх (напр., нітратаў) выяўляецца не абавязкова ў самім арганізме-назапашвальніку. Стойкія забруджвальнікі дрэнна ўключаюцца ў цыкл натуральнага кругавароту рэчываў і працяглы час захоўваюцца і ў навакольным асяроддзі і ў арганізмах, якія іх акумулююць. У працэсе руху па трафічных ланцугах яны могуць ствараць значна большыя канцэнтрацыі — аж да асабліва небяспечных для існавання асобных відаў жывёл і раслін, а таксама для здароўя чалавека. Прыкладам такой акумуляцыі забруджвальных рэчываў з’яўляецца назапашванне ядахімікатаў (ДДТ і некат. інш. пестыцыдаў), многіх радыенуклідаў (стронцый-90), цяжкіх металаў і інш. Для Беларусі праблема акумуляцыі забруджвальных рэчываў вельмі абвастрылася пасля стварэння на яе тэр. буйных комплексаў хім. прам-сці і асабліва ў сувязі з яе радыеактыўным забруджваннем у выніку аварыі на Чарнобыльскай АЭС.

т. 1, с. 217

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАНУЛЯВА́ННЕ (ад лац. granulum зярнятка),

наданне рэчывам, матэрыялам, мінер. угнаенням, кармам і інш. формы дробных шчыльных камячкоў (гранул). Паляпшае тэхнал. якасці сыравіны, стварае магчымасць выкарыстання яе дробнымі порцыямі, прадухіляе зліпанне, палягчае пагрузку, транспартаванне і г.д.

Выкарыстоўваецца ў металургіі (грануляванне вадкіх шлакаў — для ўжывання іх у дарожным буд-ве, вытв-сці цэменту і шлакавай цэглы; штэйнаў — для далейшай перапрацоўкі і выдалення серы; некат. металаў — для выкарыстання дробнымі порцыямі), энергетыцы (грануляванне кацельных шлакаў для паскарэння іх зацвердзявання), хім. прам-сці (грануляванне шкла, каталізатараў, палімераў суперфасфату, аміячнай салетры і інш. мінер. угнаенняў), сельскай гаспадарцы (грануляванне травяной мукі, камбікармоў і інш.). Расплаўленыя матэрыялы гранулююць раздрабленнем іх патоку струменем вады, сціснутага паветра, азоту або вадзяной пары, ліццём расплаву на мокры стальны барабан; хім. прадукты — акатваннем дробных часціц, распырскваннем расплаваў у полых высокіх вежах, ушчыльненнем парашкападобных матэрыялаў і інш.; кармы — кармавымі гранулятарамі, якія працуюць на прынцыпах выціскання, пракатвання і фармавання. Гл. таксама Гранульная металургія.

т. 5, с. 409

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)