ГАЛА́КТЫКІ,

гіганцкія гравітацыйна звязаныя зорныя сістэмы, падобныя да нашай Галактыкі. Асн. маса рэчыва сканцэнтравана ў зорках, колькасць якіх у галактыках 10​6—10​12. Галактыкі ўтрымліваюць таксама газ і касм. пыл. Размеркаваныя ў прасторы нераўнамерна, утвараюць скопішчы ў выглядзе буйнамаштабнай ячэістай структуры. Назіраюцца як светлыя туманныя плямы.

Адрозніваюць эліптычныя (E), лінзападобныя (SO), спіральныя (S), спіральныя з перамычкай (SB) і няправільныя (Ir) галактыкі. Найб. пашыраны эліптычныя, лінзападобныя, спіральныя. Эліптычныя галактыкі маюць вось сіметрыі, зоркі аварочваюцца вакол цэнтра мас сістэмы ў розных плоскасцях; як цэлае галактыкі зварочваюцца вельмі павольна. Іх дыяметр 5—50 кпк, масы 10​6—10​13 мас Сонца, свяцільнасці 10​6—10​12 свяцільнасцей Сонца. Яны складаюцца з жоўтых і чырвоных зорак, у іх практычна няма газу. У гэтых сістэмах рана спыніліся працэсы зоркаўтварэння. Прыклад карлікавых эліптычных галактык — спадарожнікі Андрамеды Туманнасці. Спіральныя галактыкі — моцна сплюшчаныя сістэмы з цэнтр. ядром; дастаткова хутка аварочваюцца ў напрамку закручвання спіралей. Маюць 2 і больш спіральных галін, дзе сканцэнтраваны іх самыя яркія і маладыя зоркі, рассеяны зорныя скопішчы, газапылавыя комплексы. Асн. маса зорак знаходзіцца ў дыску галактыкі. Спіральная структура абкружана сферычнай кампанентай, якая складаецца са старых зорак і шаравых скопішчаў. Лінзападобныя галактыкі моцна сплюшчаныя, але не маюць спіральнай структуры; у іх адрозніваюць ядро, лінзу-дыск і слабы арэол — гала. Галактыкі SO, S і SB хутка аварочваюцца (скорасць вярчэння на адлегласці 10 кпк ад ядра дасягае 300 км/с) і абкружаны сферычнымі каронамі. Спіральныя галактыкі з перамычкай маюць выгляд выцягнутага ядра з перамычкай паміж дзвюма спіральнымі галінамі. Да няправільных адносяцца галактыкі, у якіх не назіраюцца выразнае ядро і вярчальная сіметрыя (напр., Магеланавы воблакі). Масы спіральных і няправільных галактык 10​9—10​12 мас Сонца, свяцільнасці 10​8—10​11 свяцільнасцей Сонца. Існуюць таксама пекулярныя галактыкі (кожная мае унікальную форму), узаемадзейныя галактыкі (падвойныя сістэмы, паміж якімі назіраюцца перамычкі светлай матэрыі), квазары.

Літ.:

Ходж П. Галактики: Пер. с англ. М., 1992;

Гуревич Л.Э., Чернин А.Д. Происхождение галактик и звезд. 2 изд. М., 1987;

Агекян Т.А. Звезды, галактики, Метагалактика. 3 изд. М., 1981.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАКТЭ́РЫІ

(ад грэч. baktērion палачка),

група мікраскапічных, пераважна аднаклетачных арганізмаў. Вядома больш за 2000 відаў, якія належаць да пракарыётаў, што не маюць аформленага клетачнага ядра. У сучаснай класіфікацыі на аснове сукупнасці марфалагічных, культуральных і фізіёлага-біяхім. прыкмет усіх бактэрый падзяляюць на эўбактэрыі і архебактэрыі. Бактэрыі маюць палачкападобную (бацылы, кластрыдыі, псеўдаманады), шарападобную (кокі), звілістую (вібрыёны, спірылы, спірахеты) форму: дыяметр 0,1—10 мкм, даўж. 1—20 мкм, а ніткаватыя шматклетачныя бактэрыі — 50—100 мкм. Некаторыя бактэрыі ўтвараюць споры. Многія рухомыя, маюць жгуцікі. Паводле спосабу жыўлення вылучаюць аўтатрофы і гетэратрофы. Залежна ад тыпу дыхання бактэрыі падзяляюць на аэробы і анаэробы. Удзельнічаюць у кругавароце рэчываў у прыродзе, ачышчэнні асяроддзя ад арган. рэшткаў, фарміраванні структуры і ўрадлівасці глебы; падтрымліваюць запасы вуглякіслага газу ў атмасферы. Выкарыстоўваюцца ў харч., мікрабіял., хім. і інш. галінах прам-сці. Патагенныя (хваробатворныя) бактэрыі — узбуджальнікі хвароб раслін, жывёл і чалавека.

Літ.:

Гусев М.В., Минеева Л.А. Микробиология. 3 изд. М., 1992.

т. 2, с. 232

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БОР (Bohr) Нільс Хенрык Давід

(7.10.1885, Капенгаген — 18.11.1962),

дацкі фізік-тэарэтык, адзін са стваральнікаў квантавай механікі. Чл. Дацкай АН (1918), замежны чл. АН СССР (1929) і інш. акадэмій. Скончыў Капенгагенскі ун-т (1908), з 1916 праф. гэтага ун-та. З 1920 дырэктар створанага ім Ін-та тэарэт. фізікі (Ін-т Нільса Бора). У 1943—45 працаваў у ЗША. Навук. працы па квантавай тэорыі атама, ядз. фізіцы, па філас. праблемах прыродазнаўства і тэорыі пазнання. Прапанаваў (1913) квантавую мадэль атама (гл. Бора тэорыя), якая адыграла важную эўрыстычную ролю ў стварэнні квантавай механікі. Прадказаў спантаннае дзяленне ядраў урану, прапанаваў кропельную мадэль і тэорыю састаўнога ядра атама (1936). Сфармуляваў адпаведнасці прынцып і дапаўняльнасці прынцып. Удзельнік барацьбы з атамнай пагрозай. Нобелеўская прэмія 1922.

Тв.:

Рус. пер. — Избр. науч. труды. [Т.]1—2. М., 1970—71.

Літ.:

Мур Р. Нильс Бор — человек и ученый. М., 1969;

Кляус Е.М., Франкфурт У.И., Френк А.М. Нильс Бор, 1885—1962. М., 1977.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАНЦУГО́ВАЯ Я́ДЗЕРНАЯ РЭА́КЦЫЯ,

ядзерная рэакцыя, у якой часціцы, што выклікаюць яе, утвараюцца як прадукты гэтай рэакцыі. Звязана з вял. энергавыдзяленнем (каля 200 МэВ на кожны акт дзялення ядра урану ці плутонію) і праходзіць з удзелам павольных ці хуткіх нейтронаў. Выкарыстоўваецца як крыніца энергіі (гл. Ядзерны рэактар), на ёй заснаваны прынцып работы ядзернай зброі.

Адзіная вядомая Л.я.р. — рэакцыя дзялення урану і некаторых трансуранавых элементаў пад уздзеяннем нейтронаў — здзейснена Э.Фермі (1942) з дапамогай уран-графітавага рэактара. Суправаджаецца выдзяленнем некалькіх нейтронаў, якія ў сваю чаргу могуць захоплівацца нераздзеленымі ядрамі і выклікаць іх дзяленне. Характарыстычная велічыня Л.я.р — каэфіцыент размнажэння k, які вызначаецца ўсярэдненымі лікамі актаў дзялення ў паслядоўных звёнах ланцуга. Самападтрымная рэакцыя магчыма толькі пры к>1; маса дзялільнага рэчыва для здзяйснення такой рэакцыі наз. крытычнай; яе велічыня залежыць ад формы і ізатопнага складу гэтага рэчыва і вагаецца ад соцень грамаў да соцень тон. Рухомыя стрыжні з матэрыялу, які добра паглынае павольныя нейтроны, дазваляюць зрабіць Л.я.р. кіравальнай.

Э.А.Рудак.

Першыя пакаленні нейтронаў, якія ўтвараюцца пры ланцуговай ядзернай рэакцыі.

т. 9, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МА-ВЫПРАМЯНЕ́ННЕ

(γ-выпрамяненне),

караткахвалевае эл.-магн. выпрамяненне з даўжынёй хвалі, меншай за 2·10​-10 м. Узнікае пры распадзе радыеактыўных ядраў (гл. Радыеактыўнасць), тармажэнні хуткіх зараджаных часціц у рэчыве (гл. Тармазное выпрамяненне), сінхратронным выпрамяненні, а таксама пры анігіляцыі электронна-пазітронных пар і ў інш. ядз. рэакцыях. З прычыны кароткай даўжыні хвалі ў гама-выпрамяненні выразныя карпускулярныя ўласцівасці (гл. Комптана эфект, Фотаэфект), хвалевыя (дыфракцыя, інтэрферэнцыя) выражаны слаба.

Асн. характарыстыка гама-выпрамянення — энергія асобнага γ-кванта Eγ =hν, дзе h — Планка пастаянная, ν — частата выпрамянення. Пры пераходзе ядра атама з узбуджанага стану з энергіяй Ei у больш нізкі энергет. стан Ek выпрамяняецца γ-квант з энергіяй Eγ = Ei = Ek Eγ = Ei — Ek. У выніку гэтага гама-выпрамянення ядраў мае лінейчасты спектр. Натуральныя радыеактыўныя крыніцы даюць гама-выпрамяненню з энергіяй да некалькіх мегаэлектронвольтаў (МэВ), у ядз. рэакцыях атрымліваюцца γ-кванты з энергіяй да дзесяткаў Мэв, а пры тармазным выпрамяненні — да соцень Мэв і больш. Гама-выпрамяненне — адно з найбольш пранікальных выпрамяненняў (пранікальнасць залежыць ад энергіі γ-квантаў і шчыльнасці рэчыва).

Гама-выпрамяненне выкарыстоўваецца для выяўлення дэфектаў у вырабах і дэталях (гл. Дэфектаскапія), экспрэснага колькаснага вызначэння волава ў рудах, стэрылізацыі харч. прадуктаў, гаматэрапіі злаякасных пухлін і інш.

А.І.Болсун.

т. 5, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЭ́ТА-РАСПА́Д,

β-распад, самаадвольнае ператварэнне ўнутры атамнага ядра аднаго з нейтронаў у пратон (ці наадварот), а таксама свабоднага нейтрона ў пратон, абумоўленае слабым узаемадзеяннем. Адзін з асн. тыпаў радыеактыўнасці. Ператварэнне нейтрона ў пратон суправаджаецца выпусканнем электрона e​- і электроннага антынейтрына ν̃e, а пратона ў нейтрон — выпусканнем пазітрона e​+ і электроннага нейтрына νe (гл. Бэта-выпрамяненне).

Пры электронным бэта-распадзе (β​-) утвараецца ядро з колькасцю пратонаў, большай на 1 за іх колькасць у зыходным ядры, напр.: 14 6 c 14 7 N + e + ν̃e . Пры пазітронным бэта-распадзе (β​+) колькасць пратонаў у ядры памяншаецца на 1: 11 6 c 11 5 β + e+ + νe . Да бэта-распаду адносяць таксама электронны захоп. Энергія, якая вылучаецца пры бэта-распадзе, размяркоўваецца пераважна паміж e​- і ν̃e (ці e​+ і νe). Перыяды паўраспадаў β-актыўных ядраў ад 10​-2 с да 10​18 гадоў. Пры бэта-распадзе не захоўваецца прасторавая цотнасць, што выяўляецца ў асіметрыі прасторавых напрамкаў у руху электронаў, якія выпраменьваюцца ядрамі: у напрамку спіна ядраў вылятае менш электронаў, чым у адваротным. Асновы тэорыі бэта-распаду закладзены Э.Фермі (1934). Далейшае развіццё тэорыі бэта-распаду прывяло да стварэння адзінай тэорыі слабых і эл.-магн. узаемадзеянняў (гл. Электраслабае ўзаемадзеянне).

М.А.Паклонскі.

т. 3, с. 386

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛКАЛО́ІДЫ

(ад позналац. alcali шчолач + грэч. eidos від),

група прыродных азотазмяшчальных злучэнняў, пераважна расліннага паходжання. Адкрыты ў пач. 19 ст.

Першы выдзелены морфій (марфін) з опію (1806), потым стрыхнін і бруцын, хінін і цынханін, кафеін, нікацін, атрапін і інш. У аснове будовы малекул алкалоідаў ляжыць гетэрацыкл ядра пірыдзіну, піралідзіну, імідазолу, аўрыну і інш. У залежнасці ад будовы алкалоіды класіфікуюць на групы: пірыдзіну (лабелін, нікацін, каніін), трапану (атрапін, какаін), хіналізідзіну (лупінін, цытызін) і інш.

Вядома некалькі тысяч алкалоідаў, з іх у жывёл толькі каля 50. Найб. багатыя алкалоідамі расліны з сям. бабовых, макавых, паслёнавых, казяльцовых, астравых, лебядовых. Колькасць алкалоідаў у тканках раслін звычайна вымяраецца долямі працэнта, рэдка дасягае 10—15% (кара хіннага дрэва). Асобныя алкалоіды спецыфічныя для пэўных родаў і сямействаў раслін, што з’яўляецца іх дадатковай сістэматычнай прыкметай. Лакалізуюцца алкалоіды ў органах раслін, напр., у хіннага дрэва ў кары, у аканіта ў клубнях, у какаінавага дрэва ў лісці. Многія з алкалоідаў у вял. дозах — моцныя яды, у малых — лек. рэчывы (шырока выкарыстоўваюцца ў фармацэўтычнай прам-сці, напр., атрапін, новакаін, кадэін, папаверын, хінін і інш.). Арганізм чалавека і жывёл яны ўзбуджаюць (кафеін, стрыхнін) або паралізуюць (марфін, рэзерпін). Некаторыя алкалоіды выкарыстоўваюць у сельскай гаспадарцы супраць шкоднікаў раслін (напр., анабазін, нікацін і іх сернакіслыя солі) і ў эксперым. біялогіі для вывядзення новых формаў с.-г. раслін (напр., калхіцын).

Літ.:

Орехов А.П. Химия алкалоидов растений СССР. М., 1965;

Мироненко А.В. Метады определения алкалоидов. Мн., 1966;

Лукнер М. Вторичный метаболизм у микроорганизмов, растений и животных: Пер. с англ. М., 1979.

т. 1, с. 262

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

З’Е́ЗДЫ КПСС,

вярхоўны орган Камуністычнай партыі Савецкага Саюза. У адпаведнасці з Канстытуцыяй СССР 1977 КПСС адводзілася роля кіруючай сілы сав. грамадства, ядра яго паліт. сістэмы, дзярж. і грамадскіх арг-цый. Паводле Статута КПСС з’езды склікаліся не радзей аднаго разу ў 5 гадоў, нечарговыя — па ініцыятыве ЦК або па патрабаванні не менш як ⅓ агульнай колькасці членаў партыі, прадстаўленых на апошнім з’ездзе. Дата з’езда і парадак апавяшчаліся не пазней як за паўтара месяца да з’езда, нечарговыя з’езды склікаліся ў двухмесячны тэрмін. З’езд заслухоўваў і зацвярджаў справаздачу ЦК, Цэнтр. рэвіз. камісіі (ЦРК) і інш. цэнтр. арг-цый, пераглядаў, зменьваў і зацвярджаў Праграму і Статут КПСС, вызначаў лінію партыі па пытаннях унутр. і знешняй палітыкі, разглядаў і вырашаў найважнейшыя пытанні парт. і дзярж. жыцця, выбіраў ЦК і ЦРК. Указ рас. Прэзідэнта ад 20.8.1991 аб дэпартызацыі ў РСФСР дзярж. устаноў нанёс удар па манаполіі КПСС. У жн. 1991 дзейнасць КПСС на тэр. Расіі прыпынена. Даты з’ездаў: 1-ы (1898, Мінск), 2-і (1903, Брусель—Лондан), 3-і (1905, Лондан), 4-ы (1906, Стакгольм), 5-ы (1907, Лондан), 6-ы (1912, Прага), 7-ы (1917, Петраград), 8-ы (1919; гэты і ўсе наступныя адбываліся ў Маскве), 9-ы (1920), 10-ы (1921), 11-ы (1922), 12-ы (1923), 13-ы (1924), 14-ы (1925), 15-ы (1927), 16-ы (1930), 17-ы (1934), 18-ы (1939), 19-ы (1952), 20-ы (1956), 21-ы (1959), 22-і (1961), 23-і (1966), 24-ы (1971), 25-ы (1976), 26-ы (1981), 27-ы (1986), 28-ы (1990).

т. 7, с. 51

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІСТАЛО́ГІЯ

(ад гіста... + ..логія),

навука, якая вывучае заканамернасці развіцця, будову і жыццядзейнасць тканак і органаў жывёл і чалавека. Даследуе комплексы клетак, што ўваходзяць у склад тканкі, у іх узаемадзеянні паміж сабой і з прамежкавымі асяроддзямі. Як частка марфалогіі гісталогія цесна звязана з эмбрыялогіяй (гістагенез), цыталогіяй, фізіялогіяй (гістафізіялогія), біяхіміяй (гістахімія). Падзяляецца на агульную (вывучае тканкі) і прыватную (вывучае мікраскапічную будову асобных органаў і сістэм арганізма).

Развіццё гісталогіі як самаст. навукі звязана з узнікненнем мікраскапіі (італьян. вучоны Г.Галілей, 1610, англ. Р.Гук, 1665, галанд. А.Левенгук, 1695), стварэннем клетачнай тэорыі (ням. вучоны Т.Шван, 1839) і класіфікацыі тканак (ням. вучоныя Р.А.Кёлікер, 1852, і Ф.Ляйдыг, 1857). Тэрмін «гісталогія» ўвёў ням. анатам К.Маер (1819). У Расіі адным з першых гістолагаў быў А.М.Шумлянскі, які ў 1752 апісаў будову нырак. У 2-й пал. 19 — пач. 20 ст. пытанні гісталогіі нерв. сістэмы высвятлялі А.І.Бабухін, М.Д.Лаўдоўскі, А.С.Догель, П.І.Перамежка і інш. Была створана эвалюцыйная гісталогія (школы А.А.Заварзіна і М.Р.Хлопіна), нейрагісталогія (Б.І.Лаўрэнцьеў, М.А.Міслаўскі і інш.).

На Беларусі развіццё гісталогіі звязана з арганізацыяй кафедры гісталогіі ў БДУ (з 1921). Даследаванні вядуцца ў мед. ін-тах, Ін-це фізіялогіі Нац. АН. У 1920—60-я г. вывучаліся будова і развіццё клетачнага ядра, узаемасувязі морфадынамічных сістэм, што забяспечваюць раздражняльнасць клеткі, абмен рэчываў і энергіі, рост, размнажэнне і палавы працэс (П.А.Маўрадыядзі), працэсы неўратызацыі ўнутр. органаў чалавека і жывёл (П.Я.Герке), інервацыя серозных абалонак і прыдаткавых зародкавых органаў (В.Н.Блюмкін). У 1960—90-я г. даследаваліся марфал. асновы кампенсатарна-прыстасавальных рэакцый у нерв. сістэме, структура нейрасакрэтарных клетак гіпаталамуса (С.М.Мілянкоў), фарміраванне і будова нервовамышачных сувязей у працэсе развіцця (Я.Я.Карытны), органы імуннай сістэмы (А.Ф.Суханаў) і скуры (А.Д.Мядзелец). З 1970-х г. вывучаецца эмбрыянальны морфагенез органаў розных сістэм арганізма, узаемасувязі развіцця ўнутр. органаў і рэгулявальных сістэм (А.А.Арцішэўскі, Я.І.Бальшова, Н.А.Жарыкава, А.С.Леанцюк, Т.М.Малярэвіч, І.А.Мельнікаў і інш.). Распрацаваны метады інфармацыйнага, карэляцыйнага, фрактальнага аналізу біял. сістэм (Леанцюк). Вывучаецца нейрагумаральная рэгуляцыя структуры і хім. арганізацыі страўнікавых залоз (А.А.Турэўскі), мышцаў і клетак крыві (Т.Г.Мацюхіна), гісталогія нерв. сістэмы (А.П.Амвросьеў, Л.І.Арчакова, Д.М.Голуб, У.М.Калюноў, Ф.Б.Хейнман і інш.).

Літ.:

Гистология. 4 изд. М., 1989;

Голуб Д.М. Очерки развития морфологии в БССР // Морфогенез и структура органов человека и животных. Мн., 1970.

А.С.Леанцюк.

т. 5, с. 265

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛА́КТЫКА

(ад познагрэч. galaktikos малочны, млечны),

гіганцкая зорная сістэма, да якой належаць Сонца і ўся Сонечная сістэма разам з Зямлёй. У яе ўваходзяць не менш за 100 млрд. зорак (іх агульная маса каля 10​11 мас Сонца), міжзорнае рэчыва (газ і пыл, маса якіх каля 0,05 масы ўсіх зорак), касм. часціцы, эл.-магн. і гравітацыйнае поле.

Структура Галактыкі неаднародная. Адрозніваюць 3 асн. падсістэмы: сферычную (гала) — шаравыя скопішчы, чырвоныя гіганты, субкарлікі, пераменныя зоркі тыпу RR-Ліры, якія рухаюцца вакол цэнтра мас Галактыкі па выцягнутых арбітах у разнастайных напрамках і не ўдзельнічаюць у вярчэнні галактычнага дыска; прамежкавую (дыск) — большасць зорак галоўнай паслядоўнасці, у т. л. Сонца, зоркі-гіганты, белыя карлікі, планетарныя туманнасці; скорасць іх вярчэння мяняецца з адлегласцю ад цэнтра; узрост — некалькі млрд. гадоў; плоскую (тонкі дыск ці спіральныя рукавы) — маладыя зоркі, міжзорны газ і пыл, доўгаперыядычныя цэфеіды, пульсары, многія галактычныя крыніцы гама-, рэнтгенаўскага і інфрачырвонага выпрамянення; узрост гэтых зорак не большы за 100 млн. гадоў, яны не паспелі значна аддаліцца ад месцаў свайго нараджэння, таму спіральныя галіны Галактыкі лічаць месцам утварэння зорак. Цэнтральная вобласць Галактыкі (ядро) знаходзіцца ў напрамку сузор’я Стралец і заслонена ад зямнога назіральніка міжзорнымі воблакамі касм. пылу і газу. Памеры ядра Галактыкі больш за 1000 пк. Яно з’яўляецца крыніцай магутнага радыевыпрамянення, што сведчыць пра актыўныя працэсы, якія адбываюцца ў ім. Самая знешняя частка сферычнай падсістэмы — карона Галактыкі радыусам каля 70 кпк і масай, у 10 разоў большай за масу ўсёй астатняй Галактыкі. Сонца, знаходзіцца на адлегласці 8,5 кпк ад цэнтра, амаль дакладна ў плоскасці Галактыкі, і аддалена ад яе на Пн прыблізна на 25 кпк Скорасць вярчэння Сонца вакол цэнтра Галактыкі 230 км/с. Для зямнога назіральніка зоркі канцэнтруюцца ў напрамку плоскасці Галактыкі і зліваюцца ў бачную карціну Млечнага Шляху. Знаходжанне Сонца паблізу плоскасці Галактыкі ўскладняе даследаванне нашай зорнай сістэмы.

Літ.:

Марочник Л.С., Сучков А.А. Галактика. М., 1984;

Воронцов-Вельяминов Б.А. Очерки о Вселенной. 8 изд. М., 1980;

Климишин И.А. Открытие Вселенной. М., 1987.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)