ГАРЭ́ННЕ,

фізіка-хімічны працэс пераўтварэння рэчыва, які суправаджаецца інтэнсіўным вылучэннем энергіі, цепла- і масаабменам з навакольным асяроддзем і звычайна яркім свячэннем (полымем). Гарэнне ў адрозненне ад выбуху і дэтанацыі адбываецца з меншай скорасцю і без утварэння ўдарнай хвалі.

Аснова гарэння — экзатэрмічныя хім. рэакцыі, здольныя да самапаскарэння з-за назапашвання вылучанай цеплыні (цеплавое гарэнне) ці актыўных прамежкавых прадуктаў рэакцыі (ланцуговае гарэнне). Найб. шырокі клас рэакцый гарэння — акісленне вуглевадародаў (напр., пры гарэнні прыроднага паліва), вадароду, металаў і інш. Акісляльнікі — кісларод, галагены, нітразлучэнні, перхлараты. Асн. асаблівасць гарэння — здольнасць распаўсюджвання ў прасторы з-за нагрэву ці дыфузіі актыўных цэнтраў. Гарэнне можа пачацца самаадвольна (самазагаранне) ці ў выніку запальвання (полымем, эл. іскрай). Паводле агрэгатнага стану гаручага рэчыва і акісляльніку адрозніваюць гамагеннае (гарэнне газаў і газападобных рэчываў у асяроддзі газападобнага акісляльніку), гетэрагеннае (гарэнне вадкага ці цвёрдага паліва ў газападобным акісляльніку) і гарэнне выбуховых рэчываў і порахаў. Выкарыстоўваюць для вылучэння энергіі паліва ў тэхніцы (маторабудаванне, ракетная тэхніка) і цеплаэнергетыцы, атрымання мэтавых прадуктаў у тэхнал. працэсах (доменны працэс, металатэрмія і інш.). В.Л.Ганжа.

т. 5, с. 80

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯ́ЖУЧЫЯ РЭ́ЧЫВЫ ў будаўніцтве, рэчывы, якія пераходзяць з вадкага або цестападобнага стану ў каменепадобны і звязваюць пры гэтым змешаныя з імі запаўняльнікі ці змацоўваюць камяні. Бываюць неарганічныя (мінеральныя) і арганічныя. Выкарыстоўваюцца для вырабу бетону і будаўнічых раствораў, гідра-, цепла- і гукаізаляцыйных матэрыялаў і вырабаў, канструкцыйных і дэкар. пластыкаў і інш.

Неарганічныя вяжучыя рэчывы — парашкападобныя рэчывы, здольныя пры змешванні з вадой утвараць пластычную кансістэнцыю і цвярдзець. Бываюць: гідраўлічныя, якія пасля змешвання з вадой цвярдзеюць і захоўваюць трываласць на паветры і ў вадзе (партландцэмент і яго разнавіднасці, пуцаланавыя, шлакавыя і гліназёмістыя цэменты, гідраўл. вапна і інш.); паветраныя, якія цвярдзеюць і захоўваюць трываласць толькі на паветры (гіпсавыя і магнезіяльныя рэчывы, паветр. вапна і інш.); аўтаклаўнага цвярдзення, якія эфектыўна цвярдзеюць толькі пад ціскам у аўтаклавах (вапнава-крэменязёмістыя і вапнава-нефелінавыя вяжучыя, пясчаністы партландцэмент і інш.). Арганічныя вяжучыя рэчывы — цвёрдыя або вязкавадкія прыродныя ці штучныя высокамалекулярныя злучэнні, здольныя пад уплывам фіз.-хім. працэсаў пераходзіць у цвёрды або малапластычны стан. Падзяляюцца на бітумныя (гл. Асфальт, Бітумы), дзёгцевыя і палімерныя (гл. Палімеры). У састаў вяжучых рэчываў уводзяць дабаўкі, якія паляпшаюць іх якасць або надаюць новыя ўласцівасці. На Беларусі ёсць значныя паклады сыравіны для атрымання вяжучых рэчываў (гл. Будаўнічых матэрыялаў прамысловасць).

І.І.Леановіч.

т. 4, с. 339

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕЛІЯКАНЦЭНТРА́ТАР

(ад гелія... + канцэнтратар),

прыстасаванне для канцэнтрацыі сонечных прамянёў на невял. участку паверхні. Павышае шчыльнасць сонечнай радыяцыі ў 10​2—10​4 разоў, у месцы факусіроўкі дазваляе дасягнуць т-ры 3000 °C і болей, што дае магчымасць ажыццяўляць высокатэмпературныя тэхнал. працэсы. Выкарыстоўваецца ў геліяўстаноўках.

Складаецца з люстэркаў, увагнутых лінзаў і нясучых канструкцый. Распрацаваны тэхналогіі стварэння паўцвёрдых і надзіманых геліяканцэнтратараў з палімерных празрыстых і металізаваных плёнак. Канфігурацыі факусіруючых сістэм: парабалічныя (у т. л. з другасным адбівальнікам) і парабалацыліндрычныя канцэнтратары, лінзы Фрэнеля. Паверхні люстэркаў геліяканцэнтратара — звычайна фацэтныя перарывістыя і гладкія. Распрацоўка і стварэнне геліяканкэнтратара вядуцца ў Францыі (у 1968 уведзена сонечная печ з геліяканцэнтратарам парабалоіднага тыпу дыяметрам 54 м), Японіі, ЗША, Аўстраліі і інш. Пабудаваны шэраг сонечных энергетычных установак. У 1988 у Крыме пабудавана паратурбінная сонечная электрастанцыя магутнасцю 5 МВт. На Беларусі работы па распрацоўцы сістэм пераўтварэння канцэнтраванай сонечнай энергіі з выкарыстаннем цеплавых труб вядуцца ў акад. навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава». Гл. таксама Геліятэхніка.

Літ.:

Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;

Мак-Вейг Д. Применение солнечной энергии: Пер. с англ. М., 1981. У.Л.Драгун, С.У.Конеў.

т. 5, с. 141

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛЮМІ́НІЕВЫЯ СПЛА́ВЫ,

сплавы на аснове алюмінію з дабаўкамі іншых элементаў (медзі, магнію, цынку, крэмнію, марганцу, літыю, кадмію, цырконію, хрому). Адметныя малой шчыльнасцю (да 3·10​3 кг/м³), высокімі мех. ўласцівасцямі, каразійнай устойлівасцю, высокай цепла- і электраправоднасцю, трываласцю і пластычнасцю пры нізкіх т-рах. Лёгка апрацоўваюцца рэзаннем і зварваюцца кантактнай зваркай (некаторыя плаўленнем), на вырабы з іх лёгка наносяцца ахоўныя і дэкар. пакрыцці.

Разнастайнасць уласцівасцяў алюмініевых сплаваў звязана з увядзеннем пэўных прысадак, якія ўтвараюць з алюмініем цвёрдыя растворы і інтэрметаліды і з’яўляюцца ўмацавальнай фазай сплаваў. Найб. пашыраны сплавы Al—Cu—Mg (дзюралюміны), Al—Mg (магналіі), Al—Si (сілуміны), Al—Mg—Si (авіялі), высокатрывалыя Al—Zn—Mg—Cu, крыягенныя і гарачатрывалыя Al—Cu—Mn, сплавы з нізкай шчыльнасцю Al—Mg—Li, Al—Cu—Li, Al—Cu—Mg—Li, парашковыя і грануляваныя. Алюмініевыя сплавы падзяляюцца на дэфармавальныя, ліцейныя і спечаныя. З дэфармавальных пракатваннем, прасаваннем, коўкай ці штампоўкай, валачэннем атрымліваюць пліты, лісты, профілі, пруткі, накоўкі, дрот. З ліцейных алюмініевых сплаваў вырабляюць фасонныя адліўкі метадамі ліцця ў земляныя, коркавыя ці метал. кокільныя) формы, а таксама ліцця пад ціскам. Спечаныя алюмініевыя сплавы атрымліваюць метадамі парашковай металургіі. Алюмініевыя сплавы выкарыстоўваюць у авіяц. прам-сці, судна- і прыладабудаванні, аўтамаб., электратэхн. вытв-сці, буд-ве, у вытв-сці быт. вырабаў.

т. 1, с. 292

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛАКО́ННАЯ О́ПТЫКА,

раздзел оптаэлектронікі, які вывучае распаўсюджванне святла і перадачу інфармацыі па валаконных святлаводах і займаецца распрацоўкай апаратуры. Вылучылася ў самаст. кірунак у 1950-я г. ў сувязі з развіццём выліч. тэхнікі, кабельнага тэлебачання, сістэм аптычнай сувязі, мед. тэхнікі (зонды), стварэннем квантавых узмацняльнікаў, лазераў і інш.

Па святлаводах светлавыя сігналы перадаюцца з адной паверхні (тарца святлавода) на другую (выхадную) як сукупнасць элементаў відарыса, кожны з якіх перадаецца па сваёй святловядучай жыле. Стрыжань святлавода мае паказчык пераламлення святла, большы за абалонку, таму на мяжы стрыжня і абалонкі адбываецца шматразовае поўнае ўнутранае адбіццё святла, якое распаўсюджваецца па святлаводзе з малымі стратамі. Калі дыяметр святлавода большы за даўжыню хвалі (мнатамодавыя святлаводы), распаўсюджванне святла падпарадкоўваецца законам геаметрычнай оптыкі, у больш тонкіх валокнах (парадку даўжыні хвалі; аднамодавыя святлаводы) — законам хвалевай оптыкі. Святлаводы бываюць жорсткія (аднажыльныя, шматжыльныя) і ў выглядзе жгутоў з рэгулярнай укладкай валокнаў. Якасць відарыса вызначаецца дыяметрам жыл, іх колькасцю, дасканаласцю вырабу. Гал. прычына страт энергіі ў святлаводах — паглынанне святла шклом жылы.

На Беларусі даследаванні па валаконнай оптыцы, пачаліся ў 1974 у Ін-це прыкладной оптыкі АН Беларусі (г. Магілёў), вядуцца ў Аддзеле аптычных праблем інфарматыкі АН Беларусі, Бел. дзярж. ун-це інфарматыкі і радыёэлектронікі, Акадэмічным навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава» і інш.

Літ.:

Волоконная оптика. М., 1993;

Тидекен Р. Волоконная оптика и ее применение. Пер. с англ. М., 1975.

Я.В.Алішаў.

т. 3, с. 471

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІНАГРА́Д

(Vitis),

род раслін сям. вінаградавых. Вядома каля 70 відаў, пашыраных у Еўразіі і Амерыцы; на Беларусі 5 відаў. Вінаград культурны, або еўрапейскі (Vitis vinifera), вырошчваюць ва ўсім свеце паміж 20—40° паўн. ш. і 35—45° паўд. ш., ад 20 да 3000 м над узр. мора. Найб. плошчы ў Іспаніі, Італіі, Францыі, Азербайджане, Малдове, Украіне, Расіі. Культурны вінаград узнік ад дзікага ў працэсе працяглай эвалюцыі, натуральнага і штучнага адбору, існуе больш за 20 тыс. сартоў. Вырошчваюць таксама паўн.-амер. віды: вінаград Ізабела (Vitis labrusca), вінаград скальны (Vitis rupestris) і інш., якія часта выкарыстоўваюць у якасці філаксераўстойлівага прышчэпа; вінаград амурскі (Vitis amurensis), вінаград лісіны (Vitis vulpina) і інш. — для азелянення.

Шматгадовыя дрэвавыя ліяны з доўгімі (3—5 м) тонкімі аднагадовымі парасткамі і магутнай каранёвай сістэмай. Кветкі двухполыя або функцыянальна жаночыя, дробныя, зялёныя, сабраныя ў мяцёлчатае суквецце. Апыленне перакрыжаванае і самаапыленне. Цепла- і святлолюбівая расліна, якая не выносіць пераўвільгатнення, расце на лёгкіх урадлівых глебах, адчувальная да позніх веснавых і ранніх асенніх замаразкаў. Ва ўмовах Беларусі цвіце ў чэрв.—ліпені, ягады паспяваюць у канцы жніўня — пач. верасня. Ягады багатыя цукрамі, арган, кіслотамі, вітамінамі групы B, C, D. Выкарыстоўваюцца свежыя і на перапрацоўку (разынкі, сокі, віно і інш.), у лек. мэтах (гл. Ампелатэрапія). Найб. пашыраныя ў Беларусі сарты — Касманаўт, Паўночны ранні, Краса Поўначы, Мічурынскі. Гл. таксама Вінаградарства.

т. 4, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕЛІЯЎСТАНО́ЎКА,

прыстасаванне для пераўтварэння энергіі сонечнай радыяцыі ў іншыя віды энергіі з мэтай іх практычнага выкарыстання. Бываюць з геліяканцэнтратарамі і без іх.

Геліяўстаноўкі з канцэнтратарамі забяспечваюць значнае павышэнне шчыльнасці сонечнай радыяцыі, выкарыстоўваюцца для ажыццяўлення высокатэмпературных (да 3000—3500 °C пры ккдз 0,4—0,6) тэхнал. працэсаў (сонечныя печы для плаўкі металаў і тэрмаапрацоўкі вогнетрывалых матэрыялаў, сонечныя энергетычныя ўстаноўкі). Геліяўстаноўкі без канцэнтратараў непасрэдна ўлоўліваюць сонечныя прамяні — працуюць па прынцыпе «гарачай скрыні», маюць больш шырокі спектр выкарыстання (сонечныя батарэі, сонечныя воданагравальнікі, апрасняльнікі вады, сушылкі, кандыцыянеры, халадзільнікі і інш.). У геліяэнергетыцы для атрымання пары прамысл. параметраў выкарыстоўваюцца прыблізна парабалічныя геліяўстаноўкі (гл. Сонечная электрастанцыя). Перспектыўныя геліяўстаноўкі з сонечнымі цеплаакумулятарамі (ЦА). У ЦА лішак цеплавой энергіі, створаны за кошт прытоку сонечнага цяпла ў дзённы час, забіраецца цеплаакумулюючым матэрыялам, захоўваецца (да 10 сут) і паступова выкарыстоўваецца для тэхнал. або быт. патрэб.

На Беларусі даследаванні і распрацоўкі геліяўстановак і іх элементнай базы вядуцца ў Акад. навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава» (АНК ІЦМА), Ін-це фізікі цвёрдага цела паўправаднікоў Нац. АН Беларусі, Бел. політэхн. акадэміі, Цэнтр. НДІ механізацыі і электрыфікацыі сельскай гаспадаркі і інш. У АНК ІЦМА распрацаваны 2 тыпы ЦА, якія назапашваюць сонечную цеплавую энергію, што паступае праз сцены, вокны і ад геліякалектараў (тэмпературны дыяпазон ЦА 10—150 °C).

Літ.:

Гл. пры арт. Геліятэхніка.

У.Л.Драгун, С.У.Конеў.

т. 5, с. 142

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУДАЎНІ́ЧЫЯ МАТЭРЫЯ́ЛЫ,

прыродныя і штучныя матэрыялы (вырабы), якія выкарыстоўваюцца пры буд-ве і рамонце будынкаў і збудаванняў. Да будаўнічых матэрыялаў належаць прыродныя каменныя, лясныя, керамічныя, арган. і мінер. вяжучыя, метал., кампазіцыйныя, цепла- і гідраізаляцыйныя, дахавыя, лакафарбавыя і інш. матэрыялы.

Прыродныя каменныя матэрыялы (бутавы камень, жвір, друз, пясок, гліна і інш.) выкарыстоўваюцца для буд-ва фундаментаў, сцен, дарожнага адзення, падпорных сценак, а таксама для вытв-сці цэменту, вапны, гіпсу, розных кангламератаў. Лясныя будаўнічыя матэрыялы (бярвёны, брусы, дошкі, вырабы з драўніны) ідуць на буд-ва дахаў, падлог, столяў, аконных і дзвярных блокаў і інш. (гл. Драўнінныя матэрыялы). Керамічныя матэрыялы (цэгла, цагляныя камяні і інш.) прызначаны для буд-ва сцен, вырабы з керамікі — для стварэння сан.-тэхн., дрэнажавальных, электраахоўных і інш. сістэм (гл. Будаўнічая кераміка). Пашыраны ў буд-ве вяжучыя матэрыялы — арган. (бітум, дзёгаць, гудрон, смолы, пакосты і інш.) і мінер. (цэмент, вапна, гіпс). Злучэннем мінер. запаўняльнікаў і вяжучых рэчываў атрымліваюць бетоны (цэментна-, асфальта-, жалеза- і палімербетоны) і будаўнічыя растворы (цэментныя, вапнавыя, гіпсавыя, асфальтавыя і іх спалучэнні). Шырока выкарыстоўваюць будаўнічыя канструкцыі са сталі, алюмініевых сплаваў, кампазіцыйных, металапалімерных і інш. матэрыялаў. Цеплаізаляцыйныя матэрыялы атрымліваюць спяканнем шклянога парашку (шклавата, пенашкло і інш.) або змешваннем розных матэрыялаў; яны маюць нізкую цеплаправоднасць. Гідраізаляцыйныя матэрыялы (гідраізол, металаізол, бітумамінер. тканіны і інш.) маюць павышаную водаўстойлівасць і выкарыстоўваюцца для аховы буд. канструкцый ад вільгаці. Дахавыя матэрыялы (руберойд, пергамін, толь, шклоруберойд і інш.) атмасфера- і водаўстойлівыя. Лакафарбавыя матэрыялы (лакі, фарбы, грунтоўкі, шпаклёўкі) — вадкія, паста- ці парашкападобныя саставы. Гл. таксама Будаўнічых матэрыялаў прамысловасць.

І.І.Леановіч.

т. 3, с. 312

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРААЭРАМЕХА́НІКА

(ад гідра... + аэрамеханіка),

раздзел механікі, які вывучае законы руху і раўнавагі вадкасцей і газаў, а таксама іх узаемадзеянне паміж сабой і з межавымі паверхнямі цвёрдых цел. Вадкасці і газы разглядаюцца як суцэльнае асяроддзе (без уліку малекулярнай будовы). Падзяляецца на тэарэт. і эксперыментальную; уключае гідрамеханіку, аэрамеханіку, газавую дынаміку, пытанні абгрунтавання эксперыментаў і выкарыстання іх вынікаў разглядаюцца ў падобнасці тэорыі і ў мадэліраванні. Вынікі даследаванняў па гідрааэрамеханіцы выкарыстоўваюцца ў ракетна-касм., авіяц. і інш. тэхніцы, пры буд-ве суднаў, турбін, гідратэхн. збудаванняў і інш.

Станаўленне гідрааэрамеханікі як навукі звязана з працамі Л.Эйлера (атрымаў ураўненні руху ідэальнай вадкасці і неразрыўнасці ўраўненне) і Д.Бернулі (устанавіў суадносіны паміж ціскам вадкасці і яе кінетычнай энергіяй; гл. Бернулі ўраўненне). У работах Ж.Лагранжа, А.Кашы, Т.Кірхгофа, Т.Гельмгольца, Дж.Стокса, М.Я.Жукоўскага, С.А.Чаплыгіна і інш. распрацаваны аналітычныя метады даследаванняў безвіхравых і віхравых цячэнняў ідэальнай вадкасці, руху цел у вадкасцях і газах і інш. Асн. дасягненне гідрааэрамеханікі 19 ст. — пераход да даследаванняў руху рэальнай (вязкай) вадкасці, які падпарадкоўваецца ўраўненням Наўе—Стокса; ням. вучоны Л.Прандтль распрацаваў тэорыю пагранічнага слоя (1904). Тэарэт. метады гідрааэрамеханікі грунтуюцца на дакладных (ці набліжаных) ураўненнях, што апісваюць цячэнне вадкасці (газу); выкарыстанне ЭВМ дазваляе рашаць складаныя сістэмы ўраўненняў з улікам многіх фактараў.

На Беларусі праблемы гідрааэрамеханікі распрацоўваюць у Ін-це цепла- і масаабмену, Ін-це фізікі АН Беларусі, БДУ, Бел. політэхн. акадэміі.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. 4 изд. М., 1988;

Прандтль Л. Гидроаэромеханика: Пер. с нем. М., 1949;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

Б.А.Калавандзін, В.А.Сасіновіч.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)