КУХА́РЧЫК (Пётр Дзмітрыевіч) (н. 22.3.1945, в. Арда Клецкага р-на Мінскай вобл.),

бел. фізік. Чл.-кар. Нац. АН Беларусі (1994), д-р фіз.-матэм. навук (1988), праф. (1990). Скончыў БДУ (1972). У 1972—90 у НДІ прыкладных фіз. праблем імя А.Н.Сеўчанкі пры БДУ, адначасова з 1989 у БДУ (з 1990 прарэктар). Прэзідэнт к-та Міжнар. саюза радыёнавук у Беларусі. Навук. працы па радыёоптыцы і галаграфіі. Распрацоўваў і даследаваў галаграфічныя метады ў радыё-, інфрачырвоным, ЗВЧ і аптычным дыяпазонах эл.-магн. хваль. Прапанаваў і рэалізаваў метады пераўтварэння выпрамяненняў інфрачырвонага і ЗВЧ дыяпазонаў у аптычны дыяпазон, выканаў шэраг работ па тэарэт. і эксперым. даследаваннях нетрадыцыйных метадаў фарміравання радыёвідарысаў.

П.М.Бараноўскі.

П.Дз.Кухарчык.

т. 9, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛУ́ПА (франц. loupe),

сістэма з адной або некалькіх лінзаў з невял. фокуснай адлегласцю (f=0,01÷0,1 м) для разглядвання дробных аб’ектаў, размешчаных на канечнай адлегласці.

Аб’ект размяшчаюць паблізу пярэдняга фокуса Л. (паміж фокусам і Л.) так, каб яго прамы ўяўны відарыс знаходзіўся на адлегласці найлепшага бачання d (для нармальнага вока d = 0,25 м). Пры гэтым павелічэнне Л. вызначаецца формулай Γ = d/x і прымае значэнні ад 2,5 да 25. Вымяральная Л. з размешчанай перад факальнай плоскасцю шкалой выкарыстоўваецца для вызначэння лінейных памераў (адлегласцей паміж блізкімі пунктамі, шырыні і вышыні літар, таўшчыні асобных ліній і інш.). Гл. таксама Відарыс аптычны.

Утварэнне аптычнага відарыса ў лупе: F і F′ — фокусы лупы; A — аб’ект; B — уяўны відарыс аб’екта.

т. 9, с. 371

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕР (англ. laser, скарачэнне ад Light Amplification by Stimulated Emission of Radiation узмацненне святла вымушаным выпрамяненнем),

аптычны квантавы генератар эл.-магн. выпрамянення ў бачным, інфрачырвоным ці ультрафіялетавым дыяпазонах даўжынь хваль. Прынцып работы Л. заснаваны на ўзмацненні святла пры наяўнасці адваротнай сувязі. Выкарыстоўваецца ў навук. фіз., хім., біял. даследаваннях, прам-сці, медыцыне, экалогіі, лініях валаконна-аптычнай сувязі, для запісу, апрацоўкі, перадачы і захоўвання інфармацыі і інш., а таксама ў ваен. справе (прамянёвая зброя).

Л. мае актыўнае асяроддзе, прылады напампоўкі для ўзбуджэння рэчыва ва ўзмацняльны стан і адваротнай сувязі, якая забяспечвае шматразовае праходжанне выпрамянення праз актыўнае рэчыва. Адваротная сувязь ствараецца люстэркамі (гл. Аптычны рэзанатар) або перыядычнымі неаднастайнасцямі актыўнага рэчыва (Л. з размеркаванай адваротнай сувяззю). Паводле актыўнага рэчыва адрозніваюць газавы лазер, паўправадніковы лазер, цвердацелы лазер, вадкасны на арган. фарбавальніках, эксімерны Л. (на малекулах галагенаў з высакароднымі газамі), Л. на свабодных электронах і інш.; паводле рэжыму работы — неперарыўны і імпульсны (выпрамяняюцца адзінкавыя імпульсы ці перыядычная паслядоўнасць імпульсаў з частатой паўтарэння да 10​7 с​−1.

На Беларусі даследаванні і распрацоўкі Л. праводзяцца ў ін-тах фізікі, электронікі, малекулярнай і атамнай фізікі Нац. АН, БДУ, БПА і інш. Бел. вучонымі і інжынерамі створаны лазеры на арган. фарбавальніках, рэалізаваны розныя метады кіравання параметрамі лазернага выпрамянення і выкарыстання Л. ў навук. даследаваннях, медыцыне, апрацоўцы інфармацыі.

Літ.:

Степанов Б.И. Лазеры на красителях. М., 1979;

Яго ж. Лазеры сегодня и завтра. Мн., 1987;

Качмарек Ф. Введение в физику лазеров: Пер. с пол. М., 1981;

Тарасов Л.В. Лазеры действительности и надежды. М., 1985;

Войтович А.П., Севериков В.Н. Лазеры с анизотропными резонаторами. Мн., 1988.

П.А.Апанасевіч.

т. 9, с. 100

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЛЬНАМЕ́Р,

прылада для вызначэння адлегласцей да аб’ектаў без непасрэдных вымярэнняў на мясцовасці. Паводле прынцыпу дзеяння адрозніваюць Д. геам. (пасіўнага) і фіз. (актыўнага) тыпаў. Выкарыстоўваюцца ў інж. геадэзіі, тапаграфіі, ваен. справе, навігацыі, астраноміі, фатаграфіі і інш.

Прынцып дзеяння Д. геам. тыпу засн. на рашэнні роўнабаковага трохвугольніка па вядомай старане (базе) і процілеглым (паралактычным) вугле. Такія прылады бываюць монакулярныя (з адным акулярам; напр., у фотаграфічных апаратах) і бінакулярныя (гл. Стэрэаскапічны дальнамер), з пастаяннай базай і пастаянным вуглом (гл Аптычны дальнамер). Прынцып дзеяння Д. фіз. тыпу засн. на вымярэнні часавых або фазавых суадносін паміж пасланым і прынятым (адбітым ад аб’екта) сігналамі. У залежнасці ад выбранага дыяпазону і віду ваганняў адрозніваюць акустычныя Д. (гл. Гідралакацыя, Рэхалот), радыёдальнамеры і святлодальнамеры, у т.л. лазерныя.

П.С.Габец.

т. 6, с. 22

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАДВО́ЙНАЕ ПРАМЕНЕПЕРАЛАМЛЕ́ННЕ,

падваенне светлавых прамянёў пры праходжанні праз анізатропнае асяроддзе (напр., крышталь). Абумоўлена залежнасцю пераламлення паказчыка дадзенага асяроддзя ад напрамку эл. вектара светлавой хвалі (гл. Анізатрапія ў фізіцы, Крышталяоптыка).

Пры падзенні светлавой хвалі на анізатропнае асяроддзе ў ёй узнікаюць 2 хвалі з узаемна перпендыкулярнымі плоскасцямі палярызацыі (гл. Палярызацыя святла). У аднавосевых крышталях адна з хваль мае плоскасць палярызацыі, перпендыкулярную да плоскасці, якая праходзіць праз напрамак праменя святла і аптычную вось крышталя (звычайны прамень), плоскасць палярызацыі другой хвалі паралельная гэтай плоскасці (незвычайны прамень). Скорасць распаўсюджвання звычайнай хвалі і яе паказчык пераламлення не залежаць ад напрамку распаўсюджвання, а скорасць і паказчык пераламлення незвычайнай хвалі — залежаць, і для яе парушаюцца звычайныя законы пераламлення, напр., незвычайны прамень не можа ляжаць у плоскасці падзення. П.п. назіраецца таксама ў асяроддзях са штучнай анізатрапіяй, напр., пры накладанні эл. поля (Кера эфект), магн. поля (Катона—Мутона эфект) або поля пругкіх сіл (гл. Палярызацыйна-аптычны метад даследаванняў, Фотапругкасць).

Падвойнае праменепераламленне ў аднавосевым крышталі: 1 — падаючы прамень, 2 — крышталь, 3 — звычайны прамень, 4 — незвычайны прамень, α — вугал падвойнага праменепераламлення, OZ — аптычная вось крышталю.

т. 11, с. 491

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІ́НЗА (ням. Linse ад лац. lens сачавіца),

празрыстае для светлавых прамянёў цела, якое абмежавана дзвюма пераламляльнымі паверхнямі (крывалінейнымі або крывалінейнай і плоскай) і мае вось або плоскасць сіметрыі. Найб. пашыраны Л. са сферычнымі паверхнямі. Яны прызначаны для пераўтварэння формы светлавога пучка і з’яўляюцца асн. элементам аптычных сістэм (напр., Аб’ектыў, Акуляр).

Адрозніваюць збіральныя і рассейвальныя Л. Збіральная пераўтварае пучок паралельных прамянёў у пучок, які сыходзіцца ў адным пункце F′ (гал. фокусе Л.). Такая Л. ўтварае сапраўдны відарыс аб’екта, калі ён знаходзіцца перад фокусам Л., і ўяўны — калі аб’ект размешчаны паміж фокусамі і Л. (гл. Лупа). Рассейвальная Л. пераўтварае пучок паралельных прамянёў у пучок, што разыходзіцца, і заўсёды ўтварае ўяўны відарыс аб’екта. Асн. характарыстыкі Л. — фокусная адлегласць і аптычная сіла, якія характарызуюць яе пераламляльную здольнасць. Калі таўшчыня Л. значна меншая за радыусы крывізны пераламляльных паверхняў, яна наз. тонкай. Аптычная сіла Д і фокусная адлегласць 𝑓​1 тонкай Л. вызначаюцца формулай Д = ​1/𝑓​1 = (n−1) (​1/r1−​1/r2), дзе n — паказчык пераламлення матэрыялу Л., r1 і r2 — радыусы крывізны яе паверхняў; для выпуклай адносна аб’екта паверхні r>0, для ўвагнутай r<0. Адлегласці ад аптычнага цэнтра Л. да аб’екта (x) і яго відарыса (x′) звязаны паміж сабой формулай Л.: 1/x1 − 1/x = 1/ƒ′ (адлегласці ад Л. ўздоўж ходу светлавога праменя лічацца дадатнымі, супраць ходу — адмоўнымі). Гл. таксама Аберацыі аптычных сістэм, Відарыс аптычны, Павелічэнне аптычнае.

А.І.Болсун.

т. 9, с. 268

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НА́ТРЫЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць натрый. Для натрыю найб. характэрны іонныя злучэнні з крышт. будовай. Найб. шырока выкарыстоўваюць натрыю гідраксід, солі неарган. і арган. к-т (гл. Мылы).

Солі неарган. кіслот (пры бясколерным аніёне) — бясколерныя крышт. рэчывы, добра раствараюцца ў вадзе, іх водныя растворы і расплавы з’яўляюцца электралітамі. Натрыю брамід NaBr выкарыстоўваюць як аптычны матэрыял, у вытв-сці святлоадчувальных фотаматэрыялаў, у медыцыне (седатыўны сродак). Натрыю гідракарбанат NaHCO3 — пітная, ці харч., сода. Натрыю карбанат Na2CO3 — кальцыніраваная сода. Натрыю нітрат (натрыевая салетра) NaNO3 у прыродзе мінерал чылійская салетра (нітранатрыт). Выкарыстоўваюць як азотнае ўгнаенне, кансервант харч. прадуктаў. Натрыю сульфат Na2SO4 трапляюцца ў выглядзе мінералаў: тэнардыту і мірабіліту. Выкарыстоўваюць у вытв-сці шкла, цэлюлозы, як сыравіну для атрымання інш. Н.з., сернай к-ты. Натрыю тыясульфат — соль тыясернай кіслаты. Вырабляюць у выглядзе пентагідрату Na2S2O3 5H2O. Выкарыстоўваюць для звязвання хлору пасля адбельвання тканін, як фіксаж у фатаграфіі, у медыцыне. Натрыю фасфаты — солі фосфарных кіслот. Выкарыстоўваюць як кампаненты мыйных сродкаў, змякчальнікі вады, у харч. прам-сці (напр., дыгідраортафасфат NaH2PO4 — разрыхляльнік цеста), у фатаграфіі (кампаненты праявіцелю) і інш. Натрыю фтарыд NaF у прыродзе мінерал віліяміт. Выкарыстоўваюць у вытв-сці алюмінію і плавіковай к-ты, як кампанент флюсаў, эмалей, зубной пасты, кансервант драўніны, інсектыцыд і інш. Натрыю хларыд (кухонная соль, каменная соль) NaCl, tпл 801°C, шчыльн. 2161 кг/м³. Вельмі пашыраны ў прыродзе: мінерал галіт, у марской вадзе, рапе салёных азёр. Атрымліваюць з прыроднай сыравіны. Выкарыстоўваюць яе смакавую дабаўку да ежы, для атрымання соды, хлору, гідраксіду натрыю і інш.

А.П.Чарнякова.

т. 11, с. 206

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНІМАЦЫ́ЙНАЕ КІ́НО (ад лац. animatus адушаўлёны, жывы),

мультыплікацыя, від кінамастацтва, творы якога ствараюцца спосабам пакадравага малявання або інш. тэхнічнымі спосабамі.

Заснавана на пакадравай здымцы паслядоўных фазаў руху маляваных ці аб’ёмных персанажаў, пластычных кампазіцый. Праекцыя гэтых выяў на экран «ажыўляе» іх. Заснавальнік мультыплікацыі — франц. мастак і інжынер Э.Рэйно, які вынайшаў праксінаскол (1877), з дапамогай якога з 1892 даваў сеансы маляванага кіно («Аптычны тэатр»). У залежнасці ад тэхнікі стварэння сучаснае анімацыйнае кіно падзяляецца на маляванае (найб. вядомыя майстры У.Дысней, І.Іваноў-Вано, В.Кацёначкін, Р.Качанаў, Ю.Нарштэйн, Б.Сцяпанаў, Ф.Хітрук, А.Хржаноўскі); аб’ёмнае («лялечнае»; заснавальнік У.Старэвіч, І.Трнка, А.Птушко); зробленае з дапамогай ігольчастага экрана (відовішча стварае рух тысяч металічных стрыжанькоў; вынаходнік — франц. гравёр А.Аляксееў); ценявое (заснавана на прынцыпе тэатра ценяў; вынаходніца ням. рэж. Л.Райнігер); бяскамернае (малюнак наносяць адразу на плёнку; першы ў гэтай тэхніцы зрабіў фільм канадскі рэж Н.Мак-Ларэн); камп’ютэрнае.

Бел. анімацыйнае кіно першыя спробы зрабіла ў 1920-я г., выкарыстаўшы выяўл. традыцыі плакатаў і паліт. карыкатур. Мультыплікацыйныя навук.-папулярныя фільмы «Жывыя дамы́», «Бунт зубоў» (1928), «Спажывецкая кааперацыя БССР» (1930) былі першай экраннай рэкламай. У 1970—80-я г. ў ценявой тэхніцы зняты фільмы «Прытча пра зямлю», «Прытча пра паветра» і «Прытча пра ваду» (рэж. усіх І.Пікман), у стылі рухомага жывапісу або пластычнай музыкі — «Капрычыо», «Канчэрта Гроса» (І.Воўчак) і «Лафертаўская макоўніца» (А.Марчанка), традыцыі Дыснея прадоўжаны ў фільме «Марафон» (М.Тумеля), для дзяцей і дарослых зроблены маляваныя і лялечныя фільмы «Песня пра зубра» (А.Белавусаў), «Дудка-весялушка», «Несцерка» (Я.Ларчанка), «Ліса, Мужык і Мядзведзь», «Асцярожна, карасі!», «Гліняная Адоска», «Як Васіль гаспадарыў» (усе В.Доўнар), у якіх адлюстраваны бел. фальклор, «Светлячок і Расінка», «Мілавіца» (рэж. Ю.Батурын) на тэмы лірыкі М.Танка і У.Дубоўкі, «Цімка і Дзімка» (М.Лубянікава), «Хлопчык і птушка» (У.Піменаў), «Пра ката Васю і паляўнічую катавасію», «Пустэльнік і ружа», «Лістападнічак», «Пінчэр Боб і сем званочкаў» (усе К.Красніцкі), «Не шамацець!», «Фантазіі Сідарава» (Т.Жыткоўская) і інш.

В.Ф.Нячай.

т. 1, с. 370

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАГРА́ФІЯ (ад грэч. holos увесь, поўны + ...графія),

метад атрымання поўнага аб’ёмнага відарыса аб’екта, заснаваны на інтэрферэнцыі і дыфракцыі кагерэнтных хваль; галіна фізікі, што вывучае заканамернасці запісу, узнаўлення і пераўтварэння хвалевых палёў рознай прыроды (аптычных, акустычных і інш.). Галаграфію вынайшаў (1948) і атрымаў першыя галаграмы (ГЛ) найпрасцейшых аб’ектаў Д.Габар. У 1962—63 амер. фізікі Э.Лэйтс і Ю.Упатніекс выкарысталі для атрымання ГЛ лазер, а сав. фізік Ю.М.Дзенісюк (1962) прапанаваў метад запісу аб’ёмных ГЛ. У 1960-я г. створаны тэарэт. і эксперым. асновы галаграфіі.

Аб’ёмны відарыс аб’екта фіксуецца на ГЛ у выглядзе інтэрферэнцыйнай карціны, створанай прадметнай хваляй (ПХ), адбітай ад аб’екта, і кагерэнтнай з ёй апорнай хваляй (АХ). У адрозненне ад фатаграфіі, дзе зафіксаваны відарыс аптычны, ГЛ дае прасторавае размеркаванне амплітуды і фазы ПХ. Паколькі ПХ не плоская, ГЛ мае структуру нерэгулярнай дыфракцыйнай рашоткі. Інфармацыя аб размеркаванні амплітуды ПХ запісваецца ў выглядзе кантрасту інтэрферэнцыйнай карціны, а фазы — у выглядзе формы і перыяду інтэрферэнцыйных палос (гл. Інтэрферэнцыя святла). Пры асвятленні галаграмы АХ у выніку дыфракцыі святла ўзнаўляецца амплітудна-фазавае размеркаванне поля ПХ. ГЛ пераўтварае частку АХ у копію ПХ, пры ўспрыманні якой вокам ствараецца ўражанне непасрэднага назірання аб’екта. Галаграфія мае шэраг спецыфічных уласцівасцей, адрозных ад фатаграфіі: ГЛ узнаўляе аб’ёмны (монахраматычны або каляровы) відарыс аб’екта, кожны ўчастак ГЛ дазваляе ўзнавіць увесь відарыс аб’екта, аб’ёмныя ГЛ Дзенісюка ўзнаўляюцца пры дапамозе звычайных крыніц святла (сонечнае асвятленне, лямпа напальвання), галаграфічны запіс мае вял. надзейнасць і інфарм. ёмістасць, што вызначае шырокі спектр практычнага выкарыстання галаграфіі: для атрымання аб’ёмных відарысаў твораў мастацтва, стварэння галаграфічнага кіно, для неразбуральнага кантролю формы складаных аб’ектаў, вывучэння неаднароднасцей матэрыялаў, захоўвання і апрацоўкі інфармацыі, для візуалізацыі акустычных і эл.-магн. палёў і інш.

На Беларусі даследаванні па галаграфіі пачаліся ў 1968 у Ін-це фізікі АН і праводзяцца ў ін-тах фіз. і фіз.-тэхн. профілю АН, БДУ і інш. Распрацаваны фіз. прынцыпы дынамічнай галаграфіі, развіты метады апрацоўкі інфармацыі і пераўтварэння прасторавай структуры лазерных пучкоў (П.А.Апанасевіч, А.А.Афанасьеў, Я.В.Івакін, А.С.Рубанаў, Б.І.Сцяпанаў і інш.). Створаны галаграфічныя метады для даследавання дэфармацый і вібрацый аб’ектаў, рэльефу паверхні, уласцівасцей плазмы, сістэмы аптычнай памяці (У.А.Піліповіч, А.А.Кавалёў, Л.В.Танін і інш.), развіты метады радыё- і акустычнай галаграфіі (П.Дз.Кухарчык, А.С.Ключнікаў, М.А.Вількоцкі).

Літ.:

Кольер Р., Беркхарт К., Лин Л. Оптическая голография: Пер. с англ. М., 1973;

Островский Ю.И. Голография и ее применение. Л., 1973;

Денисюк Ю.Н. Изобразительная голография // Наука и человечество, 1982. М., 1982;

Рубанов А.С. Некоторые вопросы динамической голографии // Проблемы современной оптики и спектроскопии. Мн., 1980.

А.С.Рубанаў.

т. 4, с. 446

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)