БРА́ГЕ (Brahe) Ціха

(14.12.1546, Кнудструп, Швецыя — 24.10.1601),

дацкі астраном, рэфарматар практычнай астраноміі. Вучыўся ў Капенгагенскім і Лейпцыгскім ун-тах. У 1576 пабудаваў абсерваторыю Ураніборг, дзе больш за 20 гадоў сістэматычна з найвышэйшай дакладнасцю вызначаў месцазнаходжанне зорак на нябеснай сферы. Адкрыў дзве няроўнасці ў руху Месяца, даказаў, што каметы — нябесныя целы, больш далёкія за Месяц. Склаў каталог зорак, табліцы астр. рэфракцыі і інш. Яго назіранні Марса далі магчымасць І.Кеплеру ўстанавіць законы руху планет.

Літ.:

Паннекук А. История астрономии: Пер. с англ. М., 1966. С. 219.

т. 3, с. 227

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАНО́МІЯ

(ад астра... + грэч. nomos закон),

навука пра рух, будову, паходжанне і развіццё касм. целаў, іх сістэм і Сусвету ў цэлым. Вывучае розныя аб’екты: планеты і іх спадарожнікі, каметы і метэорнае рэчыва, зоркі, зорныя сістэмы (галактыкі), міжзорны газ і дыфузнае рэчыва, рассеянае ў касм. прасторы, эл.-магн. выпрамяненне нябесных целаў. Асн. раздзелы астраноміі: астраметрыя, астрафізіка, зорная астраномія, касмагонія, касмалогія, нябесная механіка, пазагалактычная астраномія, радыёастраномія.

Астраномія ўзнікла ў глыбокай старажытнасці з практычных патрэб чалавецтва. Рух Месяца, планет і сузор’яў дапамагаў вызначаць прамежкі часу і змены пораў года, весці каляндар, арыентавацца на мясцовасці. Практычны характар астр. ведаў адлюстраваўся ў нар. назвах касм. аб’ектаў (напр., Млечны Шлях — «Птушыны Шлях», планета Венера — «Вечарніца» і інш.) і ў стварэнні найпрасцейшых аграрна-астр. «абсерваторый». Адно з такіх збудаванняў дахрысціянскіх часоў з арыентаваных валуноў выяўлена і на Беларусі каля воз. Янова ў Полацкім раёне. Астраномія паспяхова развівалася ў Вавілоне, Егіпце, Стараж. Грэцыі, Індыі і Кітаі. Стараж.-грэч. вучоны Пталамей распрацаваў у 2 ст. геацэнтрычную сістэму свету, якая была агульнапрынятай амаль 1,5 тыс. гадоў. У сярэднія вякі астраномія дасягнула значнага развіцця ў дзяржавах Усходу. У 15 ст. Улугбек пабудаваў паблізу Самарканда астр. абсерваторыю з дастаткова дакладнымі на той час вугламернымі інструментамі. Узнікненне сучаснай астраноміі звязана са стварэннем геліяцэнтрычнай сістэмы свету (М.Капернік, 16 ст.), вынаходствам тэлескопа (Г.Галілей, пач. 17 ст.), адкрыццём законаў руху планет (І.Кеплер, пач. 17 ст.) і сусветнага прыцягнення закону (І.Ньютан, канец 17 ст.).

У 18 — пач. 20 ст. назіральная астраномія атрымала шматлікія звесткі пра Сонечную сістэму, фіз. прыроду зорак і інш. касм. аб’ектаў, што спрыяла стварэнню навук. карціны свету. Выкарыстанне ў астр. даследаваннях метадаў спектраскапіі, фатаграфіі і фотаметрыі прывяло да ўзнікнення астрафізікі. Вялікае значэнне мела заснаванне многіх астранамічных абсерваторый, удасканаленне астранамічных інструментаў і прылад, складанне зорных каталогаў з указаннем дакладных каардынат зорак. Гэтыя дасягненні астраноміі звязаны з працамі У.Гершэля (Вялікабрытанія), Ж.Лагранжа, П.Лапласа, У.Левер’е (Францыя), М.В.Ламаносава, В.Я.Струве, Ф.А.Брадзіхіна (Расія), К.Доплера (Аўстрыя) і інш. Значны ўклад у назіральную астраномію і астрафіз. метады даследавання зрабілі астраномы Віленскай астранамічнай абсерваторыі і астраномы — выхадцы з Беларусі: С.М.Блажко, Дз.І.Дубяга, Г.А.Ціхаў, В.К.Цэраскі. Астр. даследаванні ў б. СССР звязаны з працамі В.А.Амбарцумяна, А.А.Белапольскага, С.У.Арлова, Я.К.Харадзе і інш. Даследаванні спектраў галактык дазволілі Э.Хаблу (ЗША) выявіць у 1929 агульнае расшырэнне Сусвету, прадказанае рас. вучоным А.А.Фрыдманам (1922) на падставе тэорыі гравітацыі А.Эйнштэйна (1915—16). Сярэдзіна 20 ст. характарызавалася з’яўленнем новых сродкаў назірання і выкарыстаннем касм. тэхнікі, што значна расшырыла магчымасці астр. даследаванняў. Стварэнне аптычных і радыётэлескопаў з высокай раздзяляльнай здольнасцю, выкарыстанне штучных спадарожнікаў Зямлі, ракет, а таксама аптычных і электронных сістэм, у стварэнні якіх бралі ўдзел вучоныя Беларусі, дало магчымасць у 1960—80 выявіць і даследаваць новыя касм. аб’екты: радыёгалактыкі, квазары, пульсары, крыніцы рэнтгенаўскага і нейтрыннага выпрамяненняў. Астраномія стала эксперыментальнай навукай, здольнай непасрэдна даследаваць касм. прастору, вывучаць Месяц і бліжэйшыя планеты. З дапамогай касм. апаратаў (напр., «Венера», «Марс», «Меркурый», «Рэйнджэр» і інш.) атрыманы фотаздымкі Месяца і амаль усіх планет Сонечнай сістэмы (акрамя Плутона), адкрыты новыя спадарожнікі планет, кольцы вакол планет-гігантаў, сфатаграфавана ядро каметы Галея.

Літ.:

Бакулин П.М., Кононович Э.В., Мороз В.И. Курс обшей астрономии. 5 изд. М., 1983;

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Климишин И.А. Астрономия наших дней. 3 изд. М., 1986;

Паннекук А. История астрономии: Пер. с англ. М., 1966.

А.А.Навіцкі.

т. 2, с. 52

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАЦЬМЕ́ННІ,

астранамічныя з’явы, пры якіх нябесныя свяцілы часткова або поўнасцю робяцца нябачнымі. Адбываюцца з-за таго, што больш далёкае ад Зямлі нябеснае цела закрываецца больш блізкім, ці таму, што на адно нябеснае цела падае цень другога. Да З. адносяць сонечныя і месяцовыя З., а таксама закрыцці зорак і планет (Месяц пры руху закрывае зорку ці планету), праходжанні планет па дыску Сонца (назіраюцца ў Меркурыя і Венеры), З. спадарожнікаў іншых планет, праходжанні ценю спадарожніка па дыску планеты і інш. Звесткі аб момантах З. і ўмовах іх бачнасці прыводзяцца ў астр. штогодніках.

Сонечныя З. адбываюцца, калі Месяц (у фазе маладзіка), праходзячы паміж Зямлёю і Сонцам, поўнасцю ці часткова засланяе Сонца. Поўнае З. Сонца назіраецца там, дзе на Зямлю падае цень Месяца. Дыяметр ценю звычайна не перавышае 250—270 км. Месяц рухаецца, і яго цень перамяшчаецца і вычэрчвае паслядоўна вузкую паласу поўнага З. Фаза поўнага З. доўжыцца да 7 мін 30 с, найчасцей 2—3 мін. Па-за паласой, куды падае паўцень Месяца, назіраецца частковае З.

Сонца Калі бачны вуглавы дыяметр Месяца меншы за сонечны, назіральнік бачыць кольцападобнае З. У час сонечнага З. даследуюць дынаміку і спектральны састаў атмасферы Сонца, сонечную карону, праводзяць эксперыменты для праверкі эфектаў тэорыі адноснасці па адхіленні прамянёў святла, што ідуць ад далёкіх зорак паблізу Сонца ў полі яго прыцягнення. Месяцовыя З. адбываюцца, калі Месяц (у поўню) і Сонца знаходзяцца з процілеглых бакоў ад Зямлі і Месяц часткова ці поўнасцю трапляе ў цень Зямлі. Назіраюцца адначасова на ўсім паўшар’і Зямлі, павернутым да Месяца. Працягласць поўнага З. Месяца 1 гадз 4 мін, а ўсяго З. ад пачатку да канца — больш за 3 гадз. Месяц поўнасцю не знікае ў час З., а слаба бачны з прычыны сонечнага святла, што пераламляецца ў зямной атмасферы.

Літ.:

Дагаев М.М. Солнечные и лунные затмения. М., 1978.

Н.А.Ушакова.

Схема сонечнага зацьмення: 1 — зона поўнага зацьмення; 2 — зона частковага зацьмення; а, б, в — поўнае, частковае, кольцападобнае зацьменні.
Схема зацьмення Месяца.
Да арт. Зацьменні. Сонечная карона, сфатаграфаваная ў час сонечнага зацьмення.

т. 7, с. 25

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРА́ЛЬНЫЯ КУ́ЛЬТЫ,

пакланенне нябесным свяцілам і з’явам. Вядомыя ў рознай ступені ўсім народам. Былі найб. распаўсюджаны ў Стараж. Двухрэччы, Егіпце і Стараж. Індыі, дзе храмы адначасова служылі і абсерваторыямі. У вавілонскай рэлігіі Месяц і 5 бачных няўзброеным вокам планет былі абвешчаны багамі і атрымалі ўласныя назвы (Сім — Месяц, Шамаш — Сонца, Мадрук — Юпітэр, Іштар — Венера, Нергал — Марс, Набу — Меркурый, Нінургу — Сатурн; пра Уран і Нептун народы стараж. свету не ведалі. На аснове астральных культаў у вавілонскай рэлігіі ўзніклі астралогія, варажба і рэліг. прароцтвы. Адлюстраваннем астральных культаў у хрысціянстве з’яўляюцца легенды пра віфлеемскую зорку і сем зорак у Апакаліпсісе.

т. 2, с. 49

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́РЦБЕРГ (Herzberg) Герхард

(н. 25.12.1904, г. Гамбург, Германія),

канадскі фізік і фізікахімік. Чл. Канадскага каралеўскага т-ва (з 1939). Скончыў Тэхн. ін-т у г. Дармштат (1927), дзе працаваў у 1930—35. У 1935 эмігрыраваў у Канаду. З 1949 у Нац. даследчым цэнтры ў г. Атава. Навук. працы па атамнай і малекулярнай спектраскапіі. Вызначыў энергію дысацыяцыі малекулы кіслароду (1930), знайшоў малекулярны вадарод у атмасферы планет. Ідэнтыфікаваў спектры малекул аксіду і дыаксіду вугляроду, аксіду азоту (II), ацэтылену, метану (1946—48), даследаваў спектры больш як 30 свабодных радыкалаў. Аўтар кнігі «Спектры і будова простых свабодных радыкалаў» (1974). Нобелеўская прэмія 1971.

т. 5, с. 201

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРЫЗАНТА́ЛІ,

ізагіпсы, лініі (ізалініі) на картах, якія злучаюць аднолькавыя абсалютныя вышыні рэльефу Зямлі, Месяца і інш. планет. З’яўляюцца асн. спосабам адлюстравання рэльефу на тапагр., агульнагеагр., фіз. і гіпсаметрычных картах. Уяўляюць сабой праекцыі сячэння рэльефу ўзроўневымі паверхнямі, праведзенымі праз зададзены для карты інтэрвал (асноўныя гарызанталі), які наз. вышынёй сячэння рэльефу. Для больш падрабязнага адлюстравання паверхні гарызанталі наносяць праз палавіну (або чвэрць) асн. сячэння (дадатковыя гарызанталі). На Зямлі гарызанталі праводзяцца звычайна адносна ўзроўню Сусветнага ак. (на Беларусі ад узроўню Балтыйскага м. па футштоку ў Кранштаце). Выкарыстоўваюцца для вызначэння абс. і адносных вышынь, стромкасці схілаў, расчлянення і інш. марфалагічных характарыстык рэльефу.

А.В.Саломка.

т. 5, с. 75

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАМЕ́ТРЫЯ

(ад астра... + ...метрыя),

раздзел астраноміі, які вывучае ўзаемнае размяшчэнне нябесных целаў у прасторы і змену яго з цягам часу, а таксама памеры і форму планет і іх спадарожнікаў. Уключае фундаментальную астраметрыю (вызначае найб. дакладную сістэму сферычных каардынат), сферычную астраномію (распрацоўвае матэм. метады рашэння задач, звязаных з бачным размяшчэннем і рухам свяціл на нябеснай сферы), практычную астраномію (распрацоўвае астранамічныя інструменты і прылады). Да астраметрыі належыць таксама вызначэнне момантаў сонечных і месяцавых зацьменняў, вырашэнне праблем календара. На падставе астраметрычных назіранняў вызначаны шкала дакладнага часу, даныя пра становішча восі вярчэння Зямлі ў прасторы і ў целе Зямлі, сістэма астранамічных пастаянных, каталогі зорак, пунктаў зямной паверхні з астр. каардынатамі і пунктаў з планетаграфічнымі каардынатамі на паверхні Месяца, Марса, Меркурыя і інш. планет. Еўрапейскае касмічнае агенцтва ў 1989 запусціла астраметрычны спадарожнік «Гіпаркос», які вызначыў каардынаты, уласныя рухі і трыганаметрычныя паралаксы 118 тыс. зорак з дакладнасцю да 2-тысячных доляў вуглавой секунды і амаль для мільёна зорак з меншай дакладнасцю. Выкарыстанне ў астраметрыі сродкаў радыё-, электроннай і выліч. тэхнікі дазваляе выконваць арыентацыю касм. апаратаў у час працяглых міжпланетных палётаў, назіраць ШСЗ і інш. Метадамі астраметрыі карыстаюцца ў геадэзіі, картаграфіі і навігацыі.

Літ.:

Подобед В.В., Нестеров В.В. Обшая астрометрия. 2 изд. М., 1982;

Бакулин П.Н. Фундаментальные каталоги звезд. 2 изд. М., 1980;

Бакулин П.И., Блинов Н.С. Служба точного времени. 2 изд. М., 1977;

Положенцев Д.Д. Радио- и космическая астрометрия. Л., 1982.

Дз.Дз.Палажэнцаў.

т. 2, с. 50

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНАЯ ЛАКА́ЦЫЯ,

выяўленне аддаленых аб’ектаў, вызначэнне іх месцазнаходжання, геам. памераў і скорасці руху з дапамогай эл.-магн. хваляў аптычнага дыяпазону (10​14—10​15 Гц). Бывае пасіўная (пры ўласным выпрамяненні аб’екта) і актыўная (лазерная; пры адбіцці ад паверхні аб’екта выпрамянення лакацыйнай станцыі). Крыніца эл.-магн. выпрамянення для зандзіравання — лазер. Аптычная лакацыя адрозніваецца высокай раздзяляльнай здольнасцю (да доляў метра), высокай дакладнасцю ў вызначэнні вуглавых каардынатаў (да адзінак вуглавых секундаў) і скорасці аб’екта. Выкарыстоўваецца ў паветр. і касм. навігацыі, ваен. справе (навядзенне ракет, снарадаў), астраноміі (аптычная лакацыя планет), для даследавання стану атмасферы, дакладнага картаграфавання паверхні Зямлі, Месяца і інш.

Літ.:

Лазерная локация. М., 1984.

Я.В.Алішаў.

т. 1, с. 437

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАНАМІ́ЧНЫЯ ПАСТАЯ́ННЫЯ,

універсальныя параметры, якія характарызуюць арбіты, масы, памеры, форму, арыентацыю і рух касмічных целаў. Вызначаюцца са шматлікіх астр. назіранняў, некаторыя — тэарэтычна.

Сістэма астранамічных пастаянных уключае: 2 вызначальныя (гаўсава гравітацыйная пастаянная k = 0,017202009895, скорасць святла ў вакууме c = 299792458 м/с), 9 асноўных (напр., гравітацыйная пастаянная Ньютана-Кавендыша G = 6,6720·1011 м³/кг·с, экватарыяльны радыус Зямлі ae = 6378140 м і інш.), шэраг вытворных пастаянных (напр., астранамічная адзінка A = 1,49597870·10​11 м, пастаянная аберацыі x = 20,49552 і інш.), а таксама масы і экватарыяльныя радыусы вял. планет і Сонца. Астранамічныя пастаянныя выкарыстоўваюцца пры рашэнні задач дынамікі Сонечнай сістэмы, дастасавальных задач геадэзіі, картаграфіі, касманаўтыкі, навігацыі, вылічэнні эфемерыд, апрацоўцы астр. назіранняў у адзінай сістэме каардынат.

В.К.Абалакін.

т. 2, с. 52

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КАЕ ПРОЦІСТАЯ́ННЕ Марса, становішча планеты Марс, калі ён відаць з Зямлі ў напрамку, процілеглым Сонцу, і пры гэтым збліжаецца з Зямлёй на мінімальна магчымую адлегласць. Пры вялікім процістаянні Марс зручны для назірання: адлегласць да яго меншая за 60 млн. км (0,4 а.а.), вуглавы дыяметр павялічваецца да 25″, бляск дасягае -2,5 зорнай велічыні. Вялікія процістаянні адбываюцца ў інтэрвале дат ад 5 ліпеня да 5 кастрычніка, калі Зямля пры сваім руху па арбіце даганяе Марс, які знаходзіцца паблізу перыгелія. На гэты інтэрвал прыпадаюць 2 вялікія процістаянні з перыядам 15,05 года і адно з перыядам 2,136 года, потым зноў 2 праз 15,05 года і г.д. Апошнія вялікія процістаянні адбыліся ў 1971, 1986 і 1988. Наступнае чакаецца ў 2003. Гл. Таксама канфігурацыі планет.

Я.У.Чайкоўскі.

т. 4, с. 368

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)