ВУГЛАВО́Е ПАСКАРЭ́ННЕ,

вектарная велічыня ε, якая характарызуе хуткасць змены вуглавой скорасці. Пры вярчэнні цвёрдага цела вакол нерухомай восі модуль вуглавога паскарэння ε = lim Δt 0 Δω Δt = dω dt = d2φ dt2 , дзе Δω — змена вуглавой скорасці ε за прамежак часу Δω, φ — вугал павароту. Пры гэтым вектар ε накіраваны ўздоўж восі вярчэння (у бок вектара вуглавой скорасці ω пры паскораным вярчэнні і супраць ω — пры запаволеным). Адзінка вуглавога паскарэння ў СІрадыян на секунду ў квадраце (рад/с2).

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

КУЛО́НА ЗАКО́Н,

адзін з асн. законаў электрастатыкі, які вызначае сілу ўзаемадзеяння паміж двума кропкавымі зарадамі (гл. Зарад электрычны). Устаноўлены ў 1785 Ш.А.Кулонам і незалежна Г.Кавендышам (яго працы апублікаваны ў 1879) і з’яўляецца эксперым. абгрунтаваннем класічнай электрадынамікі.

Паводле К.з. 2 кропкавыя задачы q1 і q2 узаемадзейнічаюць у вакууме з сілай F, модуль якой прама прапарцыянальны здабытку гэтых зарадаў і адваротна прапарцыянальны квадрату адлегласці г паміж імі: F = kq1q2/r​2, дзе k = 1/4πε0, ε0электрычная пастаянная. Сіла накіравана ўздоўж прамой, што злучае зарады, і адпавядае прыцягненню рознаіменных зарадаў і адштурхоўванню аднайменных. Калі ўзаемадзейныя зарады знаходзяцца ў аднародным дыэлектрыку з дыэлектрычнай пранікальнасцю ε, сіла іх узаемадзеяння змяншаецца ў ε разоў. Абагульненне К.з. прыводзіць да Гаўса тэарэмы.

т. 9, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРТАГАНА́ЛЬНАЯ СІСТЭ́МА,

1) мноства {xn} ненулявых вектараў у эўклідавай (гільбертавай) прасторы, для якіх скалярны здабытак (xn, xm) = 0 пры n ≠ m. Калі модуль кожнага вектара роўны 1, то сістэма {xn} наз. артанармоўнай. Поўную артаганальную сістэму наз. артаганальным базісам. Адпаведна вызначаецца і артанармоўны базіс.

2) Сістэма каардынатаў, у якой каардынатныя лініі (або паверхні) перасякаюцца пад прамым вуглом. Звычайна карыстаюцца дэкартавымі, палярнымі, эліптычнымі, сферычнымі, цыліндрычнымі артаганальнай сістэмай каардынатаў.

3) Сістэма мнагаскладаў {Pn(x)}, n = 0, 1, 2, ..., якія на адрэзку [a, b] з вагой g(x) задавальняюць умовам артаганальнасці ∫​ba Pn(x)Pm(x)g(x)dx = 0 /n≠m/, пры гэтым ступень кожнага мнагасклада Pn(x) супадае з яго індэксам n. Выкарыстоўваюцца ў задачах матэм. фізікі, тэорыі выяўленняў груп, вылічальнай матэматыкі і інш. 4) Сістэма функцый, n = 1, 2..., якія на адрэзку [a, b] з вагой p(x) задавальняюць умовам артаганальнасці: ∫​ba φn(x)φ*m(x)p(x)dz = 0 пры n≠m, дзе * — знак камплекснай спалучанасці. Напр., сістэма трыганаметр. функцый ½, cos nπx, sin nπx (n = 1, 2, ...) — артаганальная сістэма на адрэзку [-1,1] з вагой 1. Выкарыстоўваецца для рашэння задач, напр., спектральнага аналізу ў тэорыі ваганняў, акустыкі, радыёфізікі, оптыкі.

В.А.Ліпніцкі.

т. 1, с. 504

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b вектараў a і b — вектар, праведзены з пачатку a да канца b, калі канец a і пачатак b супадаюць. Складанне вектараў мае ўласцівасці: a + b = b + a ; ( a + b ) + c = a + ( b + c ) ; a + 0 = a ; a + (−a) = 0 ; дзе 0 — нулявы вектар, a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць ab вектараў a і b — вектар x такі, што x + b = a ; рознасць ab ёсць вектар, які злучае канец вектара b з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α a | і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a=0, то α a = 0. Уласцівасці множання вектара на лік: α ( a + b )) = αa + αb ; ( a + b )) α = a α + b α ; α ( β a ) = ( α β ) a ; 1 a = a . Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)