АБСАЛЮ́ТНАЯ ВЕЛІЧЫНЯ́ рэчаіснага ліку, велічыня, роўная гэтаму ліку, калі ён дадатны, роўная процілегламу ліку, калі ён адмоўны, і роўная нулю, калі лік роўны нулю. Абсалютная велічыня ліку a абазначаецца (a). Напр., (+2) = (-2) = 2, (0) = 0. Абсалютная велічыня (або модуль) комплекснага ліку a + bi, дзе a і b — рэчаісныя лікі, роўныя (a + bi) = +a2 + b2 . Напр., (i) = (-i) = 1, (3 + 4i) = 5.

т. 1, с. 43

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВУГЛАВА́Я СКО́РАСЦЬ,

вектарная велічыня ω, якая характарызуе скорасць вярчэння цвёрдага цела. Модуль вуглавой скорасці ω = lim Δt 0 Δφ Δt = dφ dt , дзе Δφ — прырашчэнне вугла павароту за прамежак часу Δt. Вектар ω накіраваны ўздоўж восі вярчэння ў той бок, адкуль паварот цела бачны супраць ходу гадзіннікавай стрэлкі (правіла правага вінта). Адзінка вуглавой скорасці ў СІ — радыян за секунду (рад/с).

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗРУХ у супраціўленні матэрыялаў,

від пругкай дэфармацыі, які характарызуецца зменай (скажэннем) вуглоў элементарных паралелепіпедаў цела пры захаванні іх аб’ёму. Прыводзіць да ўзаемнага зрушэння паралельных слаёў матэрыялу з захаваннем нязменнай адлегласці паміж імі. Пры З. мае месца Гука закон: τ=Gγ, дзе τ — датычнае напружанне, што выклікае З., G — модуль З. дадзенага матэрыялу (гл. Модулі пругкасці), γ — вугал З. ці адносны З. Разлік на З. — асноўны для балтовых і заклёпачных злучэнняў і зварных швоў.

т. 7, с. 114

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРБІТА́ЛЬНЫ МО́МАНТ,

момант імпульсу мікрачасціцы пры яе руху ў сілавым сферычна сіметрычным полі. Паводле квантавай механікі арбітальны момант квантаваны: яго модуль L і праекцыя Lz на адвольную вось маюць дыскрэтныя значэнні — L​2 = ћ​21(1+1), Lz = mћ, дзе ћ = h/(2П), h — Планка пастаянная, 1 = 0, 1, 2, ... — арбітальны квантавы лік, m = 1, 1 - 1, ..., -1 — магнітны квантавы лік. Класіфікацыя станаў мікрачасціц па значэнні 1 адыгрывае важную ролю ў тэорыі атама і атамнага ядра, у тэорыі сутыкненняў.

т. 1, с. 458

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВУГЛАВО́Е ПАСКАРЭ́ННЕ,

вектарная велічыня ε, якая характарызуе хуткасць змены вуглавой скорасці. Пры вярчэнні цвёрдага цела вакол нерухомай восі модуль вуглавога паскарэння ε = lim Δt 0 Δω Δt = dω dt = d2φ dt2 , дзе Δω — змена вуглавой скорасці ε за прамежак часу Δω, φ — вугал павароту. Пры гэтым вектар ε накіраваны ўздоўж восі вярчэння (у бок вектара вуглавой скорасці ω пры паскораным вярчэнні і супраць ω — пры запаволеным). Адзінка вуглавога паскарэння ў СІрадыян на секунду ў квадраце (рад/с2).

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

КУЛО́НА ЗАКО́Н,

адзін з асн. законаў электрастатыкі, які вызначае сілу ўзаемадзеяння паміж двума кропкавымі зарадамі (гл. Зарад электрычны). Устаноўлены ў 1785 Ш.А.Кулонам і незалежна Г.Кавендышам (яго працы апублікаваны ў 1879) і з’яўляецца эксперым. абгрунтаваннем класічнай электрадынамікі.

Паводле К.з. 2 кропкавыя задачы q1 і q2 узаемадзейнічаюць у вакууме з сілай F, модуль якой прама прапарцыянальны здабытку гэтых зарадаў і адваротна прапарцыянальны квадрату адлегласці г паміж імі: F = kq1q2/r​2, дзе k = 1/4πε0, ε0электрычная пастаянная. Сіла накіравана ўздоўж прамой, што злучае зарады, і адпавядае прыцягненню рознаіменных зарадаў і адштурхоўванню аднайменных. Калі ўзаемадзейныя зарады знаходзяцца ў аднародным дыэлектрыку з дыэлектрычнай пранікальнасцю ε, сіла іх узаемадзеяння змяншаецца ў ε разоў. Абагульненне К.з. прыводзіць да Гаўса тэарэмы.

т. 9, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МУА́ЎРА ФО́РМУЛА,

правіла ўзвядзення ў ступень камплекснага ліку, вызначанага ў трыганаметрычнай форме. Атрымана А.Муаўрам (1707); сучасны запіс прапанаваў Л.Эйлер (1748).

Паводле М.ф. пры ўзвядзенні ліку z = r ( cosφ + isinφ ) у ступень n модуль ліку r узводзіцца ў гэтую ступень, а аргумент φ памнажаецца на паказчык ступені: z n = r n ( cosnφ + isinnφ ) . З М.ф. вынікаюць таксама выражэнні для cosnφ і sinnφ праз ступені cosφ і sinφ: cosnφ = cos n φ + C n 2 cos n2 φ sin 2 φ + C n 4 cos n4 φ × sin 4 φ + ... , sinnφ = cos n φ + C n 1 cos n1 φ sinφ + C n 3 cos n3 φ × sin 3 φ + ... , дзе Cnmбінаміяльныя каэфіцыенты.

т. 10, с. 542

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЕ ПО́ЛЕ ЗЯМЛІ́ прастора, у якой дзейнічаюць сілы зямнога магнетызму. На адлегласці ≈3R🜨 (дзе R🜨 — радыус Зямлі) адпавядае прыблізна полю аднародна намагнічанага шара па восі, якая адхіляецца ад восі вярчэння Зямлі на 11,5°, з напружанасцю поля ≈55,7 А/м каля магнітных полюсаў Зямлі і 33,4 А/м на магн. экватары. На адлегласці >3R🜨 М.п.З. мае больш складаную будову (гл. Магнітасфера). Назіраюцца векавыя, сутачныя і нерэгулярныя змены (варыяцыі) М.п.З., у т.л. магнітныя буры.

Характарызуецца магнітнай індукцыяй. З’яўляецца сумай палёў: дыпольнага (створанае аднароднай намагнічанасцю шара), недыпольнага (поле мацерыковых анамалій), анамальнага (абумоўленае намагнічанасцю верхняй ч. зямной кары), поля, звязанага з вонкавымі прычынамі, поля варыяцый. Галоўнае М.п.З. складаецца з дыпольнага і мацерыковага, нармальнае — з гал. і вонкавага, назіраемае — з нармальнага і анамальнага магн. палёў.

На Беларусі модуль нармальнага магн. поля складае каля 50 тыс. нТл, схіленне ўсходняе каля 5°, нахіленне дадатнае на Пн каля 70°. Лакальныя анамаліі 2 тыс.—3 тыс. нТл. Макс. значэнне анамальнага поля 7,5 тыс. нТл назіраецца ў раёне в. Навасёлкі Гродзенскай вобл. над пакладамі ільменіт-магнетытавых руд. Гл. таксама Магнітнае поле.

Я.І.Майсееў.

т. 9, с. 480

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕХАТРО́НІКА [ад меха(ніка) + (элек)троніка],

галіна навукі і тэхнікі, якая аб’ядноўвае дасягненні механікі, мікраэлектронікі, інфарматыкі і найноўшых тэхналогій для пабудавання складаных аўтам. сістэм. Узнікла ў 1980-я г. ў Японіі. Асн. мэта — камп’ютэрызацыя вытв-сці. Механізмы М. спалучаюць хуткадзеянне логіка-выліч. аперацый камп’ютэра з сілавымі характарыстыкамі мех. выканаўчых органаў машын і механізмаў. Машына (напр., аўтамабіль, робат, гібкі вытворчы модуль), прылада ці інш. тэхн. сістэма пры аснашчэнні мікракамп’ютэрам набывае «інтэлект».

Адзін з асн. прыкладных аспектаў М. — робататэхніка. У М. атрымалі далейшае развіццё ідэі кібернетыкі аб запазычанні ў жывой прыроды кіроўных рухальных і лагічных функцый пры стварэнні складаных тэхн. сістэм. Мехатронныя сістэмы ўтвараюць непадзельнае адзінства мех. і электронных вузлоў, дзе ажыццяўляецца абмен энергіяй і інфармацыяй, а праграмнае забеспячэнне мікра-ЭВМ рэалізуе арыгінальныя алгарытмы кіравання, адаптацыі, сачэння і інш. Тыповыя прадукты М. — механізмы прыводу (драйверы) дыскаводаў ЭВМ, прыводу кампакт-дыскаў, счытвальных прылад, відэатэхнікі.

На Беларусі работы па праблемах М. вядуцца ў Нац. АН (НДА «Кібернетыка», Навук. цэнтр праблем механікі машын), БПА, Бел. ун-це інфарматыкі і радыёэлектронікі і інш.

Літ.:

Мехатроника: Пер. с яп. М., 1988.

А.І.Дабралюбаў.

т. 10, с. 323

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРТАГАНА́ЛЬНАЯ СІСТЭ́МА,

1) мноства {xn} ненулявых вектараў у эўклідавай (гільбертавай) прасторы, для якіх скалярны здабытак (xn, xm) = 0 пры n ≠ m. Калі модуль кожнага вектара роўны 1, то сістэма {xn} наз. артанармоўнай. Поўную артаганальную сістэму наз. артаганальным базісам. Адпаведна вызначаецца і артанармоўны базіс.

2) Сістэма каардынатаў, у якой каардынатныя лініі (або паверхні) перасякаюцца пад прамым вуглом. Звычайна карыстаюцца дэкартавымі, палярнымі, эліптычнымі, сферычнымі, цыліндрычнымі артаганальнай сістэмай каардынатаў.

3) Сістэма мнагаскладаў {Pn(x)}, n = 0, 1, 2, ..., якія на адрэзку [a, b] з вагой g(x) задавальняюць умовам артаганальнасці ∫​ba Pn(x)Pm(x)g(x)dx = 0 /n≠m/, пры гэтым ступень кожнага мнагасклада Pn(x) супадае з яго індэксам n. Выкарыстоўваюцца ў задачах матэм. фізікі, тэорыі выяўленняў груп, вылічальнай матэматыкі і інш. 4) Сістэма функцый, n = 1, 2..., якія на адрэзку [a, b] з вагой p(x) задавальняюць умовам артаганальнасці: ∫​ba φn(x)φ​*m(x)p(x)dz = 0 пры n≠m, дзе ​* — знак камплекснай спалучанасці. Напр., сістэма трыганаметр. функцый ½, cos nπx, sin nπx (n = 1, 2, ...) — артаганальная сістэма на адрэзку [-1,1] з вагой 1. Выкарыстоўваецца для рашэння задач, напр., спектральнага аналізу ў тэорыі ваганняў, акустыкі, радыёфізікі, оптыкі.

В.А.Ліпніцкі.

т. 1, с. 504

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)