ЛІ́ЧБЫ,

умоўныя знакі для абазначэння лікаў. У вузкім сэнсе — знакі 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Найб. раннім з’яўляецца запіс лікаў словамі, які захоўваўся, напр., у матэматыкаў Сярэдняй Азіі і Б. Усходу да 10 ст. З развіццём эканомікі ўзнікла неабходнасць стварэння больш дасканалых спосабаў абазначэння лікаў і распрацоўкі прынцыпаў іх запісу (сістэм лічэння). Самыя старажытныя Л. з’явіліся ў 3—2-м тыс. да н. э. (Вавілон, Стараж. Егіпет, Кітай). Напр., вавілонскія Л. ўяўлялі сабой клінапісныя знакі для абазначэння лікаў 1, 10 і 100 (ці толькі 1 і 10); астатнія натуральныя лікі запісвалі з дапамогай іх злучэння. У егіпецкай іерагліфічнай нумарацыі існавалі асобныя знакі для абазначэння адзінак дзесятковых разрадаў. З 1-га тыс. да н. э. многія народы (грэкі, фінікійцы, арабы, армяне, славяне і інш.) з алфавітным пісьмом Л. абазначалі літарамі алфавіта; у славянскай нумарацыі пры гэтым зверху ставіўся спец. знак (цітла). У сярэднія вякі ў Еўропе карысталіся рымскай нумарацыяй, у якой асобнымі знакамі (рымскімі лічбамі) можна было запісаць любы лік да мільёна. Больш дасканалая нумарацыя ўзнікла ў Індыі не пазней 5 ст.; у Еўропу яе перанеслі арабы (адсюль назва арабскія Л.); сучасная дзесятковая сістэма лічэння вядома з 15 ст. Гл. таксама Лічэнне.

В.І.Бернік.

т. 9, с. 328

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДРЭ́ЗАК, сегмент (матэм.),

мноства лікаў або пунктаў на прамой, размешчаных паміж двума лікамі або пунктамі A і B, разам з пунктамі A і B. Каардынаты адрэзка задавальняюць умовам a ≤ x ≤ b (a і b — каардынаты канцоў адрэзка).

т. 1, с. 137

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІК у матэматыцы,

адна з асн. матэм. абстракцый, звязаная з выражэннем колькаснай характарыстыкі прадметаў. У самым простым выглядзе паняцце Л. ўзнікла ў першабытным грамадстве і вызначалася неабходнасцю правядзення падлікаў і вымярэнняў у практычнай дзейнасці чалавека. Потым Л. становіцца асн. паняццем матэматыкі і далейшае развіццё гэтага паняцця звязана з вывучэннем яго агульных заканамернасцей (гл. Лікаў тэорыя).

Паняцце натуральных Л. (1, 2, 3, ...) узнікла ў глыбокай старажытнасці з патрэбы параўноўваць і колькасна характарызаваць (лічыць) розныя мноствы прадметаў. З узнікненнем пісьменства Л. пазначалі рыскамі на матэрыяле, які служыў для запісу, напр. папірусе, гліняных таблічках. Пазней уведзены інш. знакі для абазначэння вял. лікаў. З цягам часу паняцце натуральнага Л. набыло больш абстрактную форму, якая ў вуснай мове перадаецца словамі, на пісьме — спец. знакамі. Важным крокам з’яўляецца асэнсаванне бясконцасці натуральнага раду Л., што адлюстравана ў помніках антычнай матэматыкі, працах Эўкліда і Архімеда. Паняцце аб адмоўных Л. узнікла ў 6—11 ст. у Індыі. Аналіз аперацый складаннЯ, адымання, множання і дзялення Л. спрыяў узнікненню навукі пра Л.арыфметыкі. Узнікненне дробавых (рацыянальных) Л. звязана з патрэбамі праводзіць вымярэнні. Напр., даўжыня вымяралася адкладаннем адрэзка, прынятага за адзінку; аднак адзінка вымярэння не заўсёды ўкладвалася цэлую колькасць разоў, што вяло да дзялення цэлага на часткі. Патрэба ў дакладным выражэнні адносін велічынь (напр., адносіны дыяганалі квадрата да яго стараны) прывяла да ўводу ірацыянальных Л. Пры рашэнні лінейных і квадратных ураўненняў паводле фармальных правіл іншы раз атрымліваліся адмоўныя і ўяўныя Л., якім быў нададзены строгі сэнс — узнікла алгебра. Неабходнасць вывучаць фіз. працэсы, неперарыўныя ў прасторы і часе (напр., рух цела), стымулявала ўвядзенне сапраўдных Л. і паняцця лікавай прамой, што з’явілася асновай стварэння матэм. аналізу. Далейшае развіццё паняцця Л. прывяло да камплексных лікаў, гіперкамплексных лікаў, р-адычных лікаў.

Літ.:

Нечаев В.И. Числовые системы. М., 1975;

Бейкер А. Введение в теорию чисел: Пер. с англ. Мн., 1995.

В.І.Бернік.

т. 9, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДЗІ́НКА 1) найменшы з натуральных лікаў n = 1. Пры множанні адвольнага ліку на 1 атрымліваецца той жа самы лік.

2) Элемент e мноства M наз. адзінкай, у адносінах да бінарнай алг. аперацыі *, калі для адвольнага элемента a мноства M выконваецца роўнасць a * e = a, або e * a = a (абедзве роўнасці незалежныя, г. зн., што ў агульным выпадку a * в ≠ в * a). Адрозніваюць левыя і правыя адзінкі: a * eп = a і eл * a = a. Калі на мностве M вызначана некалькі бінарных аперацый (напр., множанне і складанне лікаў), то e наз. адзінкай толькі ў адносінах да множання, у адносінах да складання — нулём.

т. 1, с. 108

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛЕЖА́НДР ((Legendre) Адрыен Мары) (18.9.1752, Парыж — 10.1.1833),

французскі матэматык. Чл. Парыжскай АН (1783). Скончыў Калеж Мазарыні ў Парыжы (1774). З 1816 праф. політэхн. школы ў Парыжы, адначасова з 1813 чл. Бюро далгот. Навук. працы па матэм. аналізе, тэорыі лікаў, нябеснай механіцы і тэорыі геадэзічных вымярэнняў. Увёў найпрасцейшыя сферычныя функцыі (гл. Лежандра мнагасклады), распрацаваў найменшых квадратаў метад (1806) і выкарыстаў яго для вызначэння каметных арбіт, сфармуляваў закон размеркавання простых лікаў (1808). Удзельнічаў у вылічэннях даўжыні дугі зямнога мерыдыяна для вызначэння метра як адзінкі даўжыні. Аўтар класічнага курса элементарнай геаметрыі.

Літ.:

Стройк Д.Я. Краткий очерк истории математики: Пер. с нем. 2 изд. М., 1969.

т. 9, с. 187

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГАРЫ́ФМ ліку N па аснове a

(a>0, a≠1) (ад логас + грэч. arithmos лік),

паказчык ступені m, у якую ўзводзіцца лік a для атрымання ліку N. Абазначаецца logaN. Напр., log10100 = lg 100 = 2; log21/32 = −5. Дазваляе зводзіць множанне (дзяленне) лікаў да складання (адымання) іх Л., а ўзвядзенне ў ступень (здабыванне кораня) — да множання (дзялення) Л. на паказчык ступені (кораня).

Л. і табліцы Л. уведзены незалежна шатл. матэматыкам Дж.Неперам (1614, 1619) і швейц. матэматыкам І.Бюргі (1620). Кожнаму дадатнаму ліку адпавядае пры зададзенай аснове адзіны сапраўдны Л. (Л. адмоўнага ліку — камплексны лік). Найб. пашыраныя дзесятковыя (a = 10) і натуральныя (a = e = =2,71828...), якія абазначаюцца lgN і lnN адпаведна. Цэлую частку Л. наз. характарыстыкай, дробавую — мантысай. Дзесятковыя Л. лікаў, якія адрозніваюцца множнікам 10​n, маюць аднолькавыя мантысы, што закладзена ў аснову пабудавання лагарыфмічных табліц. У камплекснай вобласці разглядаюцца Л камплексных лікаў: Lnz = ln(z) + iArgz, дзе Argz — аргумент z. Пры пераменным х>0 суадносіны y = lnx вызначаюць лагарыфмічную функцыю. Да з’яўлення выліч. машын табліцы Л. былі асн. дапаможным сродкам пры разліках.

Ю.С.Багданаў, А.А.Гусак.

т. 9, с. 86

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУ́ПА,

адно з асноўных паняццяў сучаснай матэматыкі, выкарыстоўваецца таксама ў фізіцы і інш. навуках пры вывучэнні ўласцівасцей сіметрыі. Узнікненне выклікана неабходнасцю выконваць пэўныя дзеянні (складанне, множанне) не толькі над лікамі, але і над вектарамі, мноствамі, матрыцамі, пераўтварэннямі і інш. матэм. аб’ектамі. Паняцце групы пачало фарміравацца ў канцы 18 — пач. 19 ст. незалежна ў алгебры ў выглядзе канечных груп падстановак пры рашэнні алг. ураўненняў у радыкалах (Ж.Лагранж, Н.Абель, Э.Галуа; апошні прапанаваў і тэрмін «група»), у геаметрыі пры з’яўленні неэўклідавых геаметрый і ў праектыўнай геаметрыі, а таксама ў тэорыі лікаў (Л.Эйлер, К.Гаўс) пры вывучэнні параўнанняў і класаў рэштаў.

Групай наз. непустая сукупнасць элементаў (мноства) G, на якой зададзена алг. аперацыя *, што задавальняе ўмовам: аперацыя асацыятыўная a*(b*c)=(a*b)*c для ўсіх a*b*c з G; для любога элемента a з G існуе нейтральны элемент n, для якога a*n=n*a=a; для любога элемента a з G існуе адваротны элемент x, для якога a*x=x*а=n. Напр., мноства ўсіх цэлых лікаў адносна аперацыі складання; сукупнасць падстановак мноства X, калі пад здабыткам 2 падстановак разумець вынік іх паслядоўнага выканання для любога x з X. Частка элементаў групы G, што сама ўтварае групу адносна групавой аперацыі ў G, наз. падгрупай (напр., мноства ўсіх цотных лікаў — падгрупа групы цэлых лікаў). Група наз. канечнай (бясконцай), калі мноства G мае канечную (бясконцую) колькасць элементаў. Гл. таксама Груп тэорыя.

Р.Т.Вальвачоў.

т. 5, с. 466

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МІЛЬТАН ((Hamilton) Уільям Роўан) (4.8.1805, Дублін — 2.9.1865),

ірландскі матэматык і механік. Чл. Ірландскай АН (1832) і яе прэзідэнт у 1837—45. Чл.-кар. Пецярбургскай АН (1837). Скончыў Дублінскі ун-т (1827), з 1827 праф. і дырэктар астр. абсерваторыі гэтага ун-та. Распрацаваў тэорыю гіперкамплексных лікаў, пабудаваў сістэму кватэрніёнаў, адначасова з Г.Грасманам прапанаваў тэорыю камплексных лікаў, якая стала адной з крыніц развіцця вектарнага злічэння. Распрацаваў тэорыю аптычных з’яў і ўстанавіў аналогію паміж класічнай механікай і геам. оптыкай, сфармуляваў адзін з варыяцыйных прынцыпаў механікі — найменшага дзеяння прынцып (прынцып Гамільтана), які незалежна ад яго выказаў М.В.Астраградскі.

Літ.:

Полак Л.С. Уильям Роуэн Гамильтон // Тр. Ин-та истории естествознания и техники АН СССР. 1956. Т. 15.

т. 5, с. 15

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІ́ННІК (Юрый Уладзіміравіч) (21.1. 1915, г. Белая Царква, Украіна — 30.6. 1972),

расійскі матэматык. Акад. АН СССР (1964), замежны чл. Шведскай каралеўскай АН (1971). Герой Сац. Працы (1969). Сын У.П.Лінніка. Скончыў Ленінградскі ун-т (1938), у якім і працаваў (з 1944 праф.). З 1942 у Ленінградскім аддз. Матэм. ін-та АН СССР. Навук. працы па тэорыі лікаў, тэорыі імавернасцей і матэм. статыстыцы. Сфармуляваў лімітныя тэарэмы для незалежных выпадковых велічынь і неаднародных ланцугоў Маркава, выканаў шэраг грунтоўных даследаванняў (рашэнне праблемы Варынга, дысперсійны метад у адытыўнай тэорыі лікаў, тэорыя ацэньвання і інш.). Ленінская прэмія 1970, Дзярж. прэмія СССР 1947.

Тв.:

Избр. труды. [Т. 1—2]. Л., 1979—81.

Літ.:

Академик Ю.В. Линник: Биобиблиогр. указ. Л., 1975.

Ю.У.Ліннік.

т. 9, с. 270

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАЗІЦЫ́ЙНАЯ СІСТЭ́МА ЛІЧЭ́ННЯ,

сістэма лічэння, заснаваная на прынцыпе пазіцыйнага (памесцавага) значэння лічбаў (адна і тая ж лічба мае розныя значэнні ў залежнасці ад яе месцазнаходжання ў запісе лікаў). Найб. пашыраны двайковая сістэма лічэння, дзесятковая сістэма лічэння, а таксама шасцідзесятковая (пры запісе часу і вуглоў).

т. 11, с. 518

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)