умоўныя знакі для абазначэння лікаў. У вузкім сэнсе — знакі 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Найб. раннім з’яўляецца запіс лікаў словамі, які захоўваўся, напр., у матэматыкаў Сярэдняй Азіі і Б. Усходу да 10 ст. З развіццём эканомікі ўзнікла неабходнасць стварэння больш дасканалых спосабаў абазначэння лікаў і распрацоўкі прынцыпаў іх запісу (сістэм лічэння). Самыя старажытныя Л. з’явіліся ў 3—2-м тыс. да н. э. (Вавілон, Стараж. Егіпет, Кітай). Напр., вавілонскія Л. ўяўлялі сабой клінапісныя знакі для абазначэння лікаў 1, 10 і 100 (ці толькі 1 і 10); астатнія натуральныя лікі запісвалі з дапамогай іх злучэння. У егіпецкай іерагліфічнай нумарацыі існавалі асобныя знакі для абазначэння адзінак дзесятковых разрадаў. З 1-га тыс. да н. э. многія народы (грэкі, фінікійцы, арабы, армяне, славяне і інш.) з алфавітным пісьмом Л. абазначалі літарамі алфавіта; у славянскай нумарацыі пры гэтым зверху ставіўся спец. знак (цітла). У сярэднія вякі ў Еўропе карысталіся рымскай нумарацыяй, у якой асобнымі знакамі (рымскімі лічбамі) можна было запісаць любы лік да мільёна. Больш дасканалая нумарацыя ўзнікла ў Індыі не пазней 5 ст.; у Еўропу яе перанеслі арабы (адсюль назва арабскія Л.); сучасная дзесятковая сістэма лічэння вядома з 15 ст.Гл. таксама Лічэнне.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДРЭ́ЗАК, сегмент (матэм.),
мноства лікаў або пунктаў на прамой, размешчаных паміж двума лікамі або пунктамі A і B, разам з пунктамі A і B. Каардынаты адрэзка задавальняюць умовам a ≤ x ≤ b (a і b — каардынаты канцоў адрэзка).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛІКу матэматыцы,
адна з асн.матэм. абстракцый, звязаная з выражэннем колькаснай характарыстыкі прадметаў. У самым простым выглядзе паняцце Л. ўзнікла ў першабытным грамадстве і вызначалася неабходнасцю правядзення падлікаў і вымярэнняў у практычнай дзейнасці чалавека. Потым Л. становіцца асн. паняццем матэматыкі і далейшае развіццё гэтага паняцця звязана з вывучэннем яго агульных заканамернасцей (гл.Лікаў тэорыя).
Паняцце натуральных Л. (1, 2, 3, ...) узнікла ў глыбокай старажытнасці з патрэбы параўноўваць і колькасна характарызаваць (лічыць) розныя мноствы прадметаў. З узнікненнем пісьменства Л. пазначалі рыскамі на матэрыяле, які служыў для запісу, напр. папірусе, гліняных таблічках. Пазней уведзены інш. знакі для абазначэння вял.лікаў. З цягам часу паняцце натуральнага Л. набыло больш абстрактную форму, якая ў вуснай мове перадаецца словамі, на пісьме — спец. знакамі. Важным крокам з’яўляецца асэнсаванне бясконцасці натуральнага раду Л., што адлюстравана ў помніках антычнай матэматыкі, працах Эўкліда і Архімеда. Паняцце аб адмоўных Л. узнікла ў 6—11 ст. у Індыі. Аналіз аперацый складаннЯ, адымання, множання і дзялення Л. спрыяў узнікненню навукі пра Л. — арыфметыкі. Узнікненне дробавых (рацыянальных) Л. звязана з патрэбамі праводзіць вымярэнні. Напр., даўжыня вымяралася адкладаннем адрэзка, прынятага за адзінку; аднак адзінка вымярэння не заўсёды ўкладвалася цэлую колькасць разоў, што вяло да дзялення цэлага на часткі. Патрэба ў дакладным выражэнні адносін велічынь (напр., адносіны дыяганалі квадрата да яго стараны) прывяла да ўводу ірацыянальных Л. Пры рашэнні лінейных і квадратных ураўненняў паводле фармальных правіл іншы раз атрымліваліся адмоўныя і ўяўныя Л., якім быў нададзены строгі сэнс — узнікла алгебра. Неабходнасць вывучаць фіз. працэсы, неперарыўныя ў прасторы і часе (напр., рух цела), стымулявала ўвядзенне сапраўдных Л. і паняцця лікавай прамой, што з’явілася асновай стварэння матэм. аналізу. Далейшае развіццё паняцця Л. прывяло да камплексных лікаў, гіперкамплексных лікаў, р-адычных лікаў.
Літ.:
Нечаев В.И. Числовые системы. М., 1975;
Бейкер А. Введение в теорию чисел: Пер. с англ.Мн., 1995.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДЗІ́НКА 1) найменшы з натуральных лікаў n = 1. Пры множанні адвольнага ліку на 1 атрымліваецца той жа самы лік.
2) Элемент e мноства M наз. адзінкай, у адносінах да бінарнай алг. аперацыі *, калі для адвольнага элемента a мноства M выконваецца роўнасць a * e = a, або e * a = a (абедзве роўнасці незалежныя, г. зн., што ў агульным выпадку a * в ≠ в * a). Адрозніваюць левыя і правыя адзінкі: a * eп = a і eл * a = a. Калі на мностве M вызначана некалькі бінарных аперацый (напр., множанне і складанне лікаў), то e наз. адзінкай толькі ў адносінах да множання, у адносінах да складання — нулём.
французскі матэматык. Чл. Парыжскай АН (1783). Скончыў Калеж Мазарыні ў Парыжы (1774). З 1816 праф.політэхн. школы ў Парыжы, адначасова з 1813 чл. Бюро далгот. Навук. працы па матэм. аналізе, тэорыі лікаў, нябеснай механіцы і тэорыі геадэзічных вымярэнняў. Увёў найпрасцейшыя сферычныя функцыі (гл.Лежандра мнагасклады), распрацаваў найменшых квадратаў метад (1806) і выкарыстаў яго для вызначэння каметных арбіт, сфармуляваў закон размеркавання простых лікаў (1808). Удзельнічаў у вылічэннях даўжыні дугі зямнога мерыдыяна для вызначэння метра як адзінкі даўжыні. Аўтар класічнага курса элементарнай геаметрыі.
Літ.:
Стройк Д.Я. Краткий очерк истории математики: Пер. с нем. 2 изд. М., 1969.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛАГАРЫ́ФМліку N па аснове a
(a>0, a≠1) (ад логас + грэч. arithmos лік),
паказчык ступені m, у якую ўзводзіцца лік a для атрымання ліку N. Абазначаецца logaN. Напр., log10100 = lg 100 = 2; log21/32 = −5. Дазваляе зводзіць множанне (дзяленне) лікаў да складання (адымання) іх Л., а ўзвядзенне ў ступень (здабыванне кораня) — да множання (дзялення) Л. на паказчык ступені (кораня).
Л. і табліцы Л. уведзены незалежна шатл. матэматыкам Дж.Неперам (1614, 1619) і швейц. матэматыкам І.Бюргі (1620). Кожнаму дадатнаму ліку адпавядае пры зададзенай аснове адзіны сапраўдны Л. (Л. адмоўнага ліку — камплексны лік). Найб. пашыраныя дзесятковыя (a = 10) і натуральныя (a = e = =2,71828...), якія абазначаюцца lgN і lnN адпаведна. Цэлую частку Л.наз. характарыстыкай, дробавую — мантысай. Дзесятковыя Л.лікаў, якія адрозніваюцца множнікам 10n, маюць аднолькавыя мантысы, што закладзена ў аснову пабудавання лагарыфмічных табліц. У камплекснай вобласці разглядаюцца Л камплексных лікаў: Lnz = ln(z) + iArgz, дзе Argz — аргумент z. Пры пераменным х>0 суадносіны y = lnx вызначаюць лагарыфмічную функцыю. Да з’яўлення выліч. машын табліцы Л. былі асн. дапаможным сродкам пры разліках.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГРУ́ПА,
адно з асноўных паняццяў сучаснай матэматыкі, выкарыстоўваецца таксама ў фізіцы і інш. навуках пры вывучэнні ўласцівасцей сіметрыі. Узнікненне выклікана неабходнасцю выконваць пэўныя дзеянні (складанне, множанне) не толькі над лікамі, але і над вектарамі, мноствамі, матрыцамі, пераўтварэннямі і інш.матэм. аб’ектамі. Паняцце групы пачало фарміравацца ў канцы 18 — пач. 19 ст. незалежна ў алгебры ў выглядзе канечных груп падстановак пры рашэнні алг. ураўненняў у радыкалах (Ж.Лагранж, Н.Абель, Э.Галуа; апошні прапанаваў і тэрмін «група»), у геаметрыі пры з’яўленні неэўклідавых геаметрый і ў праектыўнай геаметрыі, а таксама ў тэорыі лікаў (Л.Эйлер, К.Гаўс) пры вывучэнні параўнанняў і класаў рэштаў.
Групай наз. непустая сукупнасць элементаў (мноства) G, на якой зададзена алг. аперацыя *, што задавальняе ўмовам: аперацыя асацыятыўная a*(b*c)=(a*b)*c для ўсіх a*b*c з G; для любога элемента a з G існуе нейтральны элемент n, для якога a*n=n*a=a; для любога элемента a з G існуе адваротны элемент x, для якога a*x=x*а=n. Напр., мноства ўсіх цэлых лікаў адносна аперацыі складання; сукупнасць падстановак мноства X, калі пад здабыткам 2 падстановак разумець вынік іх паслядоўнага выканання для любога x з X. Частка элементаў групы G, што сама ўтварае групу адносна групавой аперацыі ў G, наз. падгрупай (напр., мноства ўсіх цотных лікаў — падгрупа групы цэлых лікаў). Група наз. канечнай (бясконцай), калі мноства G мае канечную (бясконцую) колькасць элементаў. Гл. таксама Груп тэорыя.
ірландскі матэматык і механік. Чл. Ірландскай АН (1832) і яе прэзідэнт у 1837—45. Чл.-кар. Пецярбургскай АН (1837). Скончыў Дублінскі ун-т (1827), з 1827 праф. і дырэктар астр. абсерваторыі гэтага ун-та. Распрацаваў тэорыю гіперкамплексных лікаў, пабудаваў сістэму кватэрніёнаў, адначасова з Г.Грасманам прапанаваў тэорыю камплексных лікаў, якая стала адной з крыніц развіцця вектарнага злічэння. Распрацаваў тэорыю аптычных з’яў і ўстанавіў аналогію паміж класічнай механікай і геам. оптыкай, сфармуляваў адзін з варыяцыйных прынцыпаў механікі — найменшага дзеяння прынцып (прынцып Гамільтана), які незалежна ад яго выказаў М.В.Астраградскі.
Літ.:
Полак Л.С. Уильям Роуэн Гамильтон // Тр. Ин-та истории естествознания и техники АНСССР. 1956. Т. 15.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛІ́ННІК (Юрый Уладзіміравіч) (21.1. 1915, г. Белая Царква, Украіна — 30.6. 1972),
расійскі матэматык. Акад.АНСССР (1964), замежны чл. Шведскай каралеўскай АН (1971). Герой Сац. Працы (1969). Сын У.П.Лінніка. Скончыў Ленінградскі ун-т (1938), у якім і працаваў (з 1944 праф.). З 1942 у Ленінградскім аддз.Матэм. ін-та АНСССР. Навук. працы па тэорыі лікаў, тэорыі імавернасцей і матэм. статыстыцы. Сфармуляваў лімітныя тэарэмы для незалежных выпадковых велічынь і неаднародных ланцугоў Маркава, выканаў шэраг грунтоўных даследаванняў (рашэнне праблемы Варынга, дысперсійны метад у адытыўнай тэорыі лікаў, тэорыя ацэньвання і інш.). Ленінская прэмія 1970, Дзярж. прэмія СССР 1947.
Тв.:
Избр. труды. [Т. 1—2]. Л., 1979—81.
Літ.:
Академик Ю.В. Линник: Биобиблиогр. указ. Л., 1975.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ПАЗІЦЫ́ЙНАЯ СІСТЭ́МА ЛІЧЭ́ННЯ,
сістэма лічэння, заснаваная на прынцыпе пазіцыйнага (памесцавага) значэння лічбаў (адна і тая ж лічба мае розныя значэнні ў залежнасці ад яе месцазнаходжання ў запісе лікаў). Найб. пашыраны двайковая сістэма лічэння, дзесятковая сістэма лічэння, а таксама шасцідзесятковая (пры запісе часу і вуглоў).