АНТЫФЕРАМАГНЕ́ТЫК,
рэчыва, у якім усталяваўся антыферамагнітны парадак магнітных момантаў атамаў ці іонаў. Рэчыва становіцца антыферамагнетыкам ніжэй за пэўную т-ру (TN; гл. Нееля пункт) і застаецца ім звычайна да Т=0 К. Да антыферамагнетыкаў адносяцца: цвёрды кісларод (α-мадыфікацыя пры TN<24 К), хром (TN=310 К), шэраг рэдказямельных металаў, многія злучэнні, у састаў якіх уваходзяць пераходныя металы (аксіды, фтарыды, сульфіды, галагеніды, карбанаты і інш.). Антыферамагнетыкі перспектыўныя для выкарыстання ў прыладах запісу і апрацоўкі інфармацыі, стварэння акустычных ліній затрымкі, як магн. элементы ў магнітааптычных запамінальных прыладах.
т. 1, с. 402
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БАЛІСТЫ́ТЫ,
адзін з відаў бяздымнага пораху на аснове нітратаў цэлюлозы, пластыфікаваных нітраэфірамі. Звычайны састаў балістытаў: 50—60% калаксіліну і 25—40% нітрагліцэрыну (нітрагліцэрынавы порах), дыэтыленгліколь дынітрату (дыгліколевы порах) ці іх сумесі. У балістыты ўводзяць да 10% парашку алюмінію ці магнію (для вырабу цвёрдага ракетнага паліва), таксама стабілізатары (цэнтраліты), каталізатары гарэння (солі ці аксіды металаў), тэхнал. дабаўкі (вазелінавае масла, воск). Атрымліваюць балістыты змешваннем кампанентаў з вадой; пасля яе аддзялення сумесь апрацоўваюць пры пэўнай тэмпературы і ціску на вальцах. Пры гарэнні балістыты не дэтануюць, але пры павольным тэрмічным раскладанні могуць самазагарацца. Балістыты ўпершыню атрыманы А.Нобелем у 1888. Выкарыстоўваюцца ў ствольнай агнястрэльнай зброі, як цвёрдае ракетнае паліва.
т. 2, с. 254
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БЯКЕ́ТАЎ (Мікалай Мікалаевіч) (13.1.1826, с. Алфер’еўка Пензенскай вобл., Расія — 13.12.1911),
рускі фізікахімік, заснавальнік рус. школы фізікахімікаў. Акад. Пецярбургскай АН (1886). Скончыў Казанскі ун-т (1848). З 1849 у Медыка-хірург. акадэміі, з 1855 у Харкаўскім ун-це (з 1859 праф.), з 1886 у хім. лабараторыі Пецярбургскай АН. Навук. працы па фіз. хіміі. Адкрыў здольнасць магнію і цынку выцясняць іншыя металы з іх соляў (1863). Атрымаў бязводныя аксіды шчолачных металаў (1870). Выявіў магчымасць аднаўлення металаў з іх аксідаў алюмініем, што дало пачатак алюмінатэрміі. Вызначыў фіз. хімію як самаст. навук. дысцыпліну.
Тв.:
Избранные произведения по физической химии. Харьков, 1955.
Літ.:
Волков В.А., Вонский Е.В., Кузнецов Г.И. Выдающиеся химики мира: Биогр. справ. М., 1991. С. 37.
т. 3, с. 395
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЛАГЕ́НЫ,
галоіды, хімічныя элементы галоўнай падгрупы VII групы перыядычнай сістэмы: фтор F, хлор Cl, бром Br, ёд І і астат At. У прыродзе трапляюцца толькі ў злучэннях (акрамя At).
Малекула галагенаў двухатамная. У звычайных умовах фтор і хлор — газы, бром — вадкасць, ёд і астат — цвёрдыя рэчывы. З павелічэннем ат. масы (ад F да At) павышаюцца т-ры плаўлення і кіпення. Галагены маюць найб. сярод усіх хім. элементаў роднасць да электрона, фтор самы электраадмоўны элемент. Моцныя акісляльнікі, непасрэдна рэагуюць з большасцю хім. элементаў. Рэакцыйная здольнасць у радзе F—Cl—Br—I памяншаецца. З вадародам галагены ўтвараюць галагенавадароды, з металамі і неметаламі — галагеніды, з кіслародам — аксіды (фтор — фтарыды кіслароду). Усе ядавітыя і маюць бактэрыцыдныя ўласцівасці.
І.В.Боднар.
т. 4, с. 446
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВОГНЕТРЫВА́ЛЫЯ ГЛІ́НЫ,
асадкавыя тонкадысперсныя горныя пароды, якія выкарыстоўваюцца для вытворчасці вогнетрывалых матэрыялаў. Маюць высокую эластычнасць, звязвальную здольнасць і вогнетрываласць (не ніжэй як 1580 °C).
Вогнетрывалыя гліны складаюцца пераважна з каалініту ці блізкіх да яго мінералаў з агульнай формулай Al2O3·2SiO2H2O. У іх трапляюцца і інш. мінералы (напр., монатэрміт, пірафіліт, гідраслюды). Вогнетрываласць (блізкая па значэнні да т-ры плаўлення) залежыць ад хім. саставу гліны. Вогнетрывалыя гліны маюць значную колькасць аксіду алюмінію Al2O3 (гліназём; 30—45%) і розныя прымесі. Зніжаюць вогнетрываласць злучэнні жалеза і аксіды шчолачных металаў.
Выкарыстоўваюць у вытв-сці вогнетрывалых матэрыялаў для металургіі, машынабудавання, як асн. кампанент для вырабу фарфору, фаянсу, керамічных плітак і тэхн. керамікі. У Беларусі радовішчы вогнетрывалай гліны на Пд Брэсцкай і Гомельскай абласцей.
Я.М.Дзятлава.
т. 4, с. 246
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛІТАФІ́ЛЬНЫЯ ЭЛЕМЕ́НТЫ,
група хім. элементаў у геахім. класіфікацыі, якія маюць вонкавую 8-электронную абалонку (паводле тыпу інертных газаў) і размяшчаюцца на ўчастках змяншэння крывой атамных аб’ёмаў. Складаюць 93% асноўнай масы мінералаў зямной кары і 97% масы солевага саставу акіянічнай вады. Да Л.э. адносяцца 55 элементаў перыядычнай сістэмы: кісларод O, крэмній Si, алюміній Al, тытан Ti, бор B, вуглярод C і інш., шчолачныя і шчолачназямельныя металы, галагены і многія рэдкія элементы. Л.э. пераважна парамагнітныя. Уваходзяць у асноўным у састаў сілікатаў, пашыраны таксама іх аксіды, галагеніды, карбанаты, сульфаты, фасфаты. Шчыльнасць злучэння Л.э. ад 2 103 да 4 103 кг/м³. Групу Л.э. вылучыў у сваёй геахім. класіфікацыі ў 1924 В.М.Гольдшміт. Дапоўніў у 1952 Э.Садэцкі-Кардаш. Па класіфікацыі А.П.Вінаградава да Л.э. адносяцца таксама атмафільныя элементы.
У.Я.Бардон.
т. 9, с. 299
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЫШ’ЯКУ́ ЗЛУЧЭ́ННІ,
хімічныя злучэнні, у састаў якіх уваходзіць мыш’як. Найб. шырока выкарыстоўваюць аксіды і халькагеніды мыш’яку, арсеніды і шматлікія мыш’якарганічныя злучэнні.
Мыш’яку аксіды — злучэнні мыш’яку з кіслародам. Сэсквіаксід (мыш’яковісты ангідрыд ці белы мыш’як) As2O3 — белае цвёрдае рэчыва. Пры растварэнні ў вадзе ўтварае не вылучаныя ў свабодным стане ортамыш’яковістую H3AsO3 і металамыш’яковістую HAsO2 к-ты; пры ўзаемадзеянні са шчолачамі ўтварае арсеніты. Тэхн. атрымліваюць акісляльным абпалам сульфідных мінералаў мыш’яку. Выкарыстоўваюць для атрымання мыш’яку і яго злучэнняў, кансервавання скуры і футра, у вытв-сці аптычнага шкла, як інсектыцыд і некратызавальны лек. сродак. Аксід мыш’яку(V), ці мыш’яковы ангідрыд As2O5 — бясколерныя крышталі. Пры награванні раскладаецца на As2O3 і кісларод. Добра раствараецца ў вадзе, утварае ортамыш’яковую к-ту H3AsO4, солі якой наз. арсенатамі. Выкарыстоўваюць як гербіцыд, антысептык для прамочвання драўніны. Мыш’яку гідрыд (арсін, мыш’яковісты вадарод) AsH3 — газ без колеру і паху (часам мае часночны пах, абумоўлены наяўнасцю прадуктаў частковага акіслення AsH3). Пры т-ры каля 500 °C раскладаецца. Выкарыстоўваюць для атрымання мыш’яку высокай чысціні, легіравання паўправадніковых матэрыялаў мыш’яком. Мыш’яку халькагеніды, злучэнні мыш’яку з серай — сульфіды As2S3 (у прыродзе — мінерал аўрыпігмент), As4S4 (мінерал рэальгар), As4S3 (мінерал дымарфіт) i As2S5, з селенам — селеніды As2Se3 і As4Se4, з тэлурам — тэлурыд As2Te3. Усе халькагеніды, акрамя As2S5 (аморфнае рэчыва аранжавага колеру, крышталізуецца пад высокім ціскам), крышт. рэчывы. Устойлівыя ў паветры, не раствараюцца ў вадзе, добра раствараюцца ў растворах шчолачаў. As2S3, As2Se3 i As2Te3 — паўправаднікі. Атрымліваюць сплаўленнем элементаў у вакууме ці інертным асяроддзі. Выкарыстоўваюць як кампаненты халькагеніднага шкла, для вырабу валаконных святлаводаў у інфрачырв. вобласці спектра і інш. Усе растваральныя ў вадзе і слабакіслым асяроддзі (напр., страўнікавы сок) М.з. надзвычай атрутныя; злучэнні As(III) больш атрутныя за злучэнні As(V), асабліва небяспечныя AsH3 і AS2O3. ГДК мыш’яку і М.з. у паветры (у пераліку на мыш’як) 0,5 мг/м³, для AsH3 — 0,1 мг/м³.
А.П.Чарнякова.
т. 11, с. 55
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРАГЕНІЗА́ЦЫЯ (ад лац. hydrogenium вадарод),
гідрыраванне, хімічны працэс далучэння вадароду (пераважна малекулярнага) да розных рэчываў у прысутнасці каталізатара пры высокай т-ры і ціску. У якасці каталізатараў найчасцей выкарыстоўваюць металы VIII гр. перыяд. сістэмы (напр., нікель, кобальт, плаціну, паладый), аксіды металаў (напр., аксід хрому Cr2O3, алюмінію Al2O3) і інш.
Гідрагенізацыяй азоту ў прам-сці атрымліваюць аміяк, аксіду вугляроду — метылавы спірт. Практычнае значэнне мае гідрагенізацыя арган. злучэнняў з кратнымі сувязямі. Далучэнне вадароду па падвойных сувязях (С=С) ляжыць у аснове ператварэння вадкіх алеяў і тлушчаў у цвёрдыя прадукты (напр., пры вытв-сці маргарыну). Гідрагенізацыя — адна з асн. рэакцый многіх працэсаў нафтаперапрацоўкі (напр., каталітычнага рыформінгу, гідракрэкінгу). Гідрагенізацыя можа адбывацца адначасова з гідрагенолізам: разрывам сувязі С—Х (Х — вуглярод, азот, сера, кісларод) у малекуле арган. злучэння пад уздзеяннем вадароду (напр., пры атрыманні шмататамных спіртоў з поліцукрыдаў).
Я.Г.Міляшкевіч.
т. 5, с. 223
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АНТЫКАРАЗІ́ЙНЫЯ ПАКРЫ́ЦЦІ,
пакрыцці для аховы паверхні металічных вырабаў ад карозіі. Найб. пашыраныя антыкаразійныя пакрыцці: з металаў (хрому, цынку, нікелю, высакародных металаў і інш.) і іх сплаваў; з хім. злучэнняў металаў (аксіды, карбіды, нітрыды, фтарыды і інш.); з палімерных (фторпластавыя, поліэтыленавыя, поліізабутыленавыя, полівінілхларыдныя) і лакафарбавых пакрыццяў, а таксама кансервацыйныя замазкі (напр., бітум). Эфектыўнасць антыкаразійных пакрыццяў вызначаецца хім. і фазавым саставам, дасканаласцю будовы, трываласцю счаплення пакрыцця з асновай матэрыялу.
Антыкаразійныя пакрыцці бываюць анодныя ці катодныя адносна матэрыялу, які ахоўваюць. Анодныя змяншаюць, прадухіляюць карозію, катодныя могуць павялічваць яе, але пры гэтым паляпшаюць фіз.-мех. якасці матэрыялаў. Антыкаразійныя пакрыцці наносяць фарбаваннем, гальванічным, плазмавым, вакуумным, іонна-плазмавым і электрафарэтычнымі метадамі, хім. асаджэннем з газавай фазы і раствораў, плакіраваннем. Выбар метаду залежыць ад патрэбнага спалучэння матэрыялаў пакрыцця і асновы, неабходнай таўшчыні пакрыцця, магчымасці і неабходнасці яго аднаўлення ў эксплуатацыі. На Беларусі стварэннем антыкаразійных пакрыццяў займаюцца Бел. навукова-вытв. аб’яднанне парашковай металургіі, Бел. політэхн. акадэмія, Ін-т механікі металапалімерных сістэм АН Беларусі.
А.У.Белы.
т. 1, с. 397
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МА́ГМА (грэч. magma густая мазь),
расплаўленая, пераважна сілікатная маса, што ўзнікае ў зямной кары або верхняй мантыі Зямлі. У растворы М. прысутнічаюць злучэнні хім. элементаў, сярод якіх пераважаюць кісларод, крэмній, алюміній, жалеза, магній, кальцый, натрый і калій, а таксама лятучыя кампаненты (вада, аксіды вугляроду, серавадарод, вадарод, фтор, хлор і інш.). Асн. фактары ўтварэння магматычнага расплаву: радыягеннае цяпло, раптоўнае змяншэнне ціску пры ўзнікненні глыбінных разломаў, узыходныя цеплавыя патокі. Перыядычна М. ўтварае ачагі ў межах розных паводле саставу і глыбіннасці зон Зямлі (напр., у астэнасферы, у зонах сутыкнення і пасоўвання літасферных пліт). Па колькасці аксіду крэмнію М. падзяляюць на ультраасноўную, асноўную, сярэднюю і кіслую. Трапляюцца таксама М. шчолачная, сульфідная і інш. Пры вулканічным вывяржэнні (гл. Вулкан, Вулканізм) М. выліваецца ў выглядзе лавы, больш вязкая (кіслая) утварае ў жаролах вулканаў экструзіўныя купалы або разам з газамі выкідваецца ў выглядзе попелу. Пры хуткім застыванні на паверхні або дыферэнцыраванай крышталізацыі на глыбіні пры паступовым зацвярдзенні ўтварае комплекс магматычных горных парод. Гл. таксама Магматызм.
Р.Р.Паўлавец.
т. 9, с. 475
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)