БЕСПАЗВАНО́ЧНЫЯ

(Invertebrata),

шматлікая пазасістэматычная група жывёл, у якіх няма пазваночнага слупа і хорды. Назву ў пач. 19 ст. прапанаваў франц. заолаг Ж.Б.Ламарк. Падзяляюцца на 2 падцарствы: прасцейшыя, або аднаклетачныя, і шматклетачныя, у якіх адпаведна 5—9 і да 26 тыпаў жывёл. Узніклі беспазваночныя яшчэ ў дакембрыі (1,5—2 млрд. гадоў назад, магчыма, і раней). Каля 1 млрд. гадоў назад ад аднаклетачных (прасцейшых) развіліся шматклетачныя жывёлы. Прамежкавая ступень паміж імі — каланіяльныя прасцейшыя. У кембрыі ўжо існавалі прадстаўнікі многіх тыпаў беспазваночных. Да беспазваночных належаць тыпы інфузорый, губак, кішачнаполасцевых, ігласкурых, малюскаў, некаторых тыпаў ніжэйшых чарвей, членістаногіх і шэраг інш., усяго да 1—2 млн. відаў. Сярод сучасных беспазваночных найб. колькасцю відаў вызначаюцца членістаногія — да 1 млн. і малюскі — 250 тыс. Беспазваночныя пашыраны ва ўсіх біятопах Зямлі. Сярод іх па колькасці відаў пераважаюць насякомыя. На Беларусі каля 11 тыпаў беспазваночных, больш за 30 тыс. відаў, найбольш насякомых.

Важны момант у эвалюцыі беспазваночных — пераход ад радыяльнай (кішачнаполасцевыя) да двухбаковай (білатэральнай) сіметрыі, якая ўласціва больш высокаарганізаваным беспазваночным. Вышэйшыя беспазваночныя маюць другасную поласць цела (цэлом); лічыцца, што яны далі пачатак першым хордавым жывёлам. Беспазваночныя ўдзельнічаюць у біял. кругавароце рэчываў і энергіі ў біясферы. Доля іх складае да 95% біямасы наземных жывёл. Многія беспазваночныя — корм для звяроў, птушак і рыб, носьбіты ўзбуджальнікаў розных хвароб, шкоднікі с.-г. раслін; выкарыстоўваюцца таксама на харч., лек., гасп.-тэхн. мэты, для барацьбы са шкоднымі жывёламі. Некаторыя ахоўваюцца: 85 відаў беспазваночных занесена ў Чырв. кнігу Беларусі.

Літ.:

Догель В.А. Зоология беспозвоночных. 7 изд. М., 1981;

Жизнь животных. Т. 1—3. 2 изд. М., 1987—89;

Хаусман К. Протозоология: Пер. с нем. М., 1988;

Беспозвоночные: Новый обобщ. подход: Пер. с англ. М., 1992.

А.Р.Александровіч.

т. 3, с. 127

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЭ́НА

(ад лац. antenna рэя),

прыстасаванне для выпрамянення і прыёму электрамагнітных хваляў, адзін з асн. элементаў ліній радыёсувязі. Перадавальная антэна пераўтварае энергію эл.-магн. ваганняў, засяроджаную ў выхадных вагальных ланцугах радыёперадатчыка, у энергію радыёхваляў. Прыёмная антэна выконвае адваротнае пераўтварэнне энергіі радыёхваляў у энергію ВЧ-ваганняў і аддзяляе карысны сігнал ад перашкод. У большасці перадавальных антэн інтэнсіўнасць выпрамянення залежыць ад напрамку (накіраванасць выпрамянення), што павышае напружанасць эл.-магн. хвалі ў бок найб. выпрамянення (раўназначная эфекту, выкліканаму павышэннем выпрамяняльнай магутнасці); вызначаецца каэфіцыентам накіраванага дзеяння (КНДз). Залежнасць напружанасці эл. поля ад напрамку назірання графічна адлюстроўваецца дыяграмай накіраванасці (ДН). Звычайна ДН мае многапялёсткавы характар (вынік інтэрферэнцыі выпрамянення ад асобных элементаў антэны); адрозніваюць гал. пялёстак і бакавыя. Чым большыя памеры антэны ў параўнанні з даўжынёй хвалі, тым вузейшы гал. пялёстак, большы яго КНДз і большая колькасць бакавых пялёсткаў. Асн. характарыстыкі антэны (ДН, КНДз і ўваходнае супраціўленне, што характарызуе ўзгадненне антэны з лініяй перадачы) аднолькавыя ў рэжымах перадачы і прыёму. Паводле канструкцыі і прынцыпу работы антэны бываюць: бягучай хвалі антэна, дыяпазонная антэна, рамачная антэна, хваляводна-рупарная антэна, люстраная антэна, вібратарная, шчылінная, лінзавая, антэнная рашотка і інш.

Вібратарная антэна — праваднік даўжынёй L = 0,5λ, дзе λ — даўж. хвалі; КНДз=1,64, для яго павелічэння звычайна выкарыстоўваюць многавібратарныя антэны (гл. Тэлевізійная антэна), выкарыстоўваюць ва ўсіх дыяпазонах радыёхваляў. Шчылінная антэна — метал. экран з прамавугольнымі адтулінамі; выкарыстоўваюць у дыяпазоне ЗВЧ. Лінзавая антэна складаецца з абпрамяняльніка (вібратарная, шчылінная або інш. антэны) і дыэлектрычнай лінзы, якая факусіруе хвалю ў вузкі прамень; КНДз да 10​4; выкарыстоўваецца ў радыёлакацыйных і вымяральных устаноўках. Антэнная рашотка — сістэма слабанакіраваных антэн, якія ў рэжыме перадачы далучаюцца да агульнага генератара праз сістэму размеркавання магутнасці, у рэжыме прыёму — да агульнага прыёмніка; КНДз прыблізна роўны здабытку КНДз асобнага выпрамяняльніка і іх колькасці. Асаблівасць — магчымасць павароту ДН адносна самой рашоткі (эл. сканіраванне), што дасягаецца зменай рознасці фазаў паміж суседнімі выпрамяняльнікамі з дапамогай спец. фазавярчальнікаў па камандах ЭВМ.

А.А.Юрцаў.

т. 1, с. 406

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСО́РБЦЫЯ

(ад лац. ad... на, да + sorbere паглынаць),

паглынанне рэчыва з газавага або вадкага асяроддзя (адсарбату) паверхняй, мікрасітавінамі цвёрдага цела (адсарбенту) ці вадкасці. Адсорбцыя — прыватны выпадак сорбцыі, якая ўключае абсорбцыю. У аснове адсорбцыі ляжаць асаблівыя ўласцівасці рэчыва ў паверхневым слоі, колькасна яна характарызуецца паверхневым нацяжэннем. Падзяляецца на фізічную абсорбцыю і хемасорбцыю, без рэзкага размежавання паміж імі; часта спалучаецца ў адзіным працэсе.

Фізічная адсорбцыя — вынік міжмалекулярных узаемадзеянняў (дысперсных сіл і сіл электрастатычнага характару); менш трывалая, абарачальная (адначасова адбываецца дэсорбцыя) працякае адвольна з памяншэннем паверхневай свабоднай энергіі і выдзяленнем цяпла. Скорасць фіз. адсорбцыі залежыць ад хім. прыроды і геам. структуры адсарбенту, канцэнтрацыі і прыроды рэчываў, што паглынаюцца, т-ры, дыфузіі і міграцыі малекул адсарбату; калі яна роўная скорасці дэсорбцыі, настае адсарбцыйная раўнавага. Пры хемасорбцыі малекулы адсарбату і адсарбенту ўтвараюць хім. злучэнні.

Велічыню адсорбцыі адносяць да адзінкі паверхні ці масы адсарбенту; яна павялічваецца пры павышэнні канцэнтрацыі адсарбату і памяншаецца пры павышэнні т-ры. Пры цвёрдых адсарбентах велічыню адсорбцыі вызначаюць па колькасці паглынутага рэчыва ці па змене канцэнтрацыі адсарбату; пры вадкіх — па змене паверхневага нацяжэння. Адсорбцыя адыгрывае важную ролю ў цеплаабмене, стабілізацыі калоідных сістэм (гл. Дысперсныя сістэмы, Каагуляцыя, Міцэлы), у гетэрагенных рэакцыях (гл. Тапамічныя рэакцыі, Каталіз). Выкарыстоўваецца ў храматаграфіі, прамысл. тэхналогіях, мае месца ў многіх біял. і глебавых працэсах. Адсорбцыя ў біялагічных сістэмах — першая стадыя паглынання рэчываў з навакольнага асяроддзя субмікраскапічнымі калоіднымі структурамі, арганеламі і клеткамі. У рознай ступені ўласціва працэсам функцыянавання біял. мембран, узаемадзеяння ферментаў з субстратам, антыцелаў з антыгенамі (на пач. стадыі), нейтралізацыі таксічных агентаў, усмоктвання пажыўных рэчываў і інш., дзе істотнае значэнне маюць паверхневыя ўласцівасці асобных кампанентаў біял. сістэм. У мед. практыцы індыферэнтнымі, нерастваральнымі адсарбентамі карыстаюцца для выдалення з арганізма соляў цяжкіх металаў, алкалоідаў, харч. інтаксікантаў, пры метэарызме, вонкава — у выглядзе прысыпак, мазяў і пастаў — пры запаленні скуры і слізістых абалонак для падсушвання. На з’явах адсорбцыі грунтуецца шэраг метадаў біяхім. даследаванняў.

Літ.:

Адамсон А. Физическая химия поверхностей: Пер. с англ. М., 1979;

Кельцев Н.В. Основы адсорбционной техники. 2 изд. М., 1984.

т. 1, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕТРЫ́ЧНАЯ О́ПТЫКА,

раздзел оптыкі, які вывучае законы распаўсюджвання святла на аснове ўяўлення пра светлавыя прамяні як лініі, уздоўж якіх перамяшчаецца светлавая энергія. У аднародным асяроддзі прамяні прамалінейныя, у неаднародным скрыўляюцца, на паверхні раздзела розных асяроддзяў мяняюць свой напрамак паводле законаў пераламлення і адбіцця святла. Асноўныя законы геаметрычнай оптыкі вынікаюць з Максвела ўраўненняў, калі даўжыня светлавой хвалі значна меншая за памеры дэталей і неаднароднасцей, праз якія праходзіць святло; гэтыя законы фармулююцца на аснове Ферма прынцыпу.

Уяўленне пра светлавыя прамяні ўзнікла ў ант. навуцы. У 3 ст. да н.э. Эўклід сфармуляваў закон прамалінейнага распаўсюджвання святла і закон адбіцця святла. Геаметрычная оптыка пачала хутка развівацца ў сувязі з вынаходствам у 17 ст. аптычных прылад (лупа, падзорная труба, тэлескоп, мікраскоп), у гэтым асн. ролю адыгралі даследаванні Г.Галілея, І.Кеплера, В.Дэкарта і В.Снеліуса (эксперыментальна адкрыў закон пераламлення святла). У далейшым геаметрычная оптыка развівалася як дастасавальная навука, вынікі якой выкарыстоўваліся для стварэння розных аптычных прылад. Для атрымання нескажонага відарыса аптычнага лінзавая сістэма адпавядае пэўным патрабаванням: пучкі прамянёў, што выходзяць з некаторага пункта аб’екта, праходзяць праз сістэму і збіраюцца ў адзін пункт; відарыс геаметрычна падобны да аб’екта і не скажае яго афарбоўкі. Любая аптычная сістэма задавальняе патрабаванні, не звязаныя афарбоўкай, калі відарыс ствараецца параксіянальнымі прамянямі (бясконца блізкімі да аптычнай восі). Фактычна ў стварэнні відарыса ўдзельнічаюць шырокія пучкі прамянёў, нахіленыя да восі пад значнымі вугламі. У выніку наяўнасці аберацый аптычных сістэм яны не задавальняюць гэтыя патрабаванні. На аснове законаў геаметрычную оптыку памяншаюць аберацыі да дапушчальна малых значэнняў падборам гатункаў шкла, формы лінзаў і іх узаемнага размяшчэння. Для праектавання асабліва высакаякасных аптычных сістэм карыстаюцца таксама хвалевай тэорыяй святла.

Асн. палажэнні і законы геаметрычнай оптыкі выкарыстоўваюць пры праектаванні лінзавых аптычных сістэм (аб’ектывы, мікраскопы, тэлескопы і інш.), распрацоўцы і даследаванні лазерных рэзанатараў, прылад з валаконна-аптычнымі элементамі, факусатараў і канцэнтратараў светлавой, у т. л. сонечнай, энергіі, сістэм асвятлення і сігналізацыі ў аўтамаб., паветр. і марскім транспарце.

Літ.:

Слюсарев Г.Г. Методы расчета оптических систем. 2 изд. Л., 1969;

Борн М., Вольф Э. Основы оптики: Пер. с англ. М., 1970;

Вычислительная оптика: Справ. Л., 1984.

Ф.К.Руткоўскі.

т. 5, с. 120

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЎЛІ́ЧНАЯ ТУРБІ́НА,

гідратурбіна, лопасцевы гідраўлічны рухавік, які пераўтварае мех. энергію патоку вады ў энергію вярчальнага вала. Паводле прынцыпу дзеяння падзяляюцца на актыўныя турбіны (свабоднаструменныя) і рэактыўныя турбіны (напорнаструменныя), паводле размяшчэння вала рабочага кола — на вертыкальныя, гарызантальныя і нахіленыя. Выкарыстоўваюцца пераважна на гідраэлектрычных станцыях для прывода гідрагенератара (спалучаныя з ім гідраўлічныя турбіны наз. гідраагрэгатамі).

Актыўныя гідраўлічныя турбіны падзяляюцца на каўшовыя, нахіленаструменныя і двухкратныя. У каўшовых гідраўлічных турбінах рабочым колам з’яўляецца дыск, па акружнасці якога размешчаны лопасці ў выглядзе падвойных каўшоў. Накіравальным апаратам (адным або некалькімі сопламі) струмень вады пад атм. ціскам з вял. скорасцю падаецца на лопасці (каўшы) і з малой скорасцю зыходзіць з кола. Бываюць з верт. або гарыз. валам. Магутнасцю да 250 МВт, рабочы напор 40—2000 м. Рэактыўныя гідраўлічныя турбіны паводле напрамку руху вады ў рабочым коле падзяляюцца на восевыя (паваротна-лопасцевыя, прапелерныя) і нявосевыя (радыяльна-восевыя, дыяганальныя). Маюць турбінную (спіральную) камеру (забяспечвае раўнамернае паступленне вады па ўсім контуры накіравальнага апарата), накіравальны апарат з прафіляванымі лапаткамі (рэгулюе расход вады), рабочае кола з паваротнымі або нерухомымі лопасцямі (яго вал злучаны з валам эл. генератара), адсмоктвальную трубу (змяншае скорасць вады, што паляпшае выкарыстанне энергіі вадзянога патоку). Магутнасць паваротна-лопасцевых гідраўлічных турбін да 250 МВт, рабочы напор 2—70 м; дыяганальных адпаведна да 350 МВт, 40—120 м; радыяльна-восевых — да 800 МВт і болей, 2—600 м.

Разнавіднасцю гідраўлічнай турбіны было вадзяное кола, вядомае са старажытнасці. Першая рэактыўная гідраўлічная турбіна вынайдзена франц. інж. Б.Фурнеронам у 1827, радыяльна-восевая — амер. інж. Дж.Фрэнсісам у 1855, актыўная каўшовая — амер. інж. А.Пелтанам у 1889, паваротна-лопасцевая — аўстр. інж. В.Капланам у 1913. Вытв-сць гідраўлічных турбін у б. СССР наладжана ў 1924. Найб. вядомыя гідраўлічныя турбіны фірмаў Японіі, ЗША, Францыі, Вялікабрытаніі, Германіі, Швецыі і інш. На Беларусі малыя гідраўлічныя турбіны выпускаў у 1949—58 Бабруйскі маш.-буд. з-д. ГЭС Беларусі абсталяваны верт. і гарыз. радыяльна-восевымі гідраўлічнымі турбінамі. Перспектыўныя турбіны малой (10—50 кВт) магутнасці з рабочым напорам 2—5 м.

Я.П.Забела.

т. 5, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІСТАЛО́ГІЯ

(ад гіста... + ..логія),

навука, якая вывучае заканамернасці развіцця, будову і жыццядзейнасць тканак і органаў жывёл і чалавека. Даследуе комплексы клетак, што ўваходзяць у склад тканкі, у іх узаемадзеянні паміж сабой і з прамежкавымі асяроддзямі. Як частка марфалогіі гісталогія цесна звязана з эмбрыялогіяй (гістагенез), цыталогіяй, фізіялогіяй (гістафізіялогія), біяхіміяй (гістахімія). Падзяляецца на агульную (вывучае тканкі) і прыватную (вывучае мікраскапічную будову асобных органаў і сістэм арганізма).

Развіццё гісталогіі як самаст. навукі звязана з узнікненнем мікраскапіі (італьян. вучоны Г.Галілей, 1610, англ. Р.Гук, 1665, галанд. А.Левенгук, 1695), стварэннем клетачнай тэорыі (ням. вучоны Т.Шван, 1839) і класіфікацыі тканак (ням. вучоныя Р.А.Кёлікер, 1852, і Ф.Ляйдыг, 1857). Тэрмін «гісталогія» ўвёў ням. анатам К.Маер (1819). У Расіі адным з першых гістолагаў быў А.М.Шумлянскі, які ў 1752 апісаў будову нырак. У 2-й пал. 19 — пач. 20 ст. пытанні гісталогіі нерв. сістэмы высвятлялі А.І.Бабухін, М.Д.Лаўдоўскі, А.С.Догель, П.І.Перамежка і інш. Была створана эвалюцыйная гісталогія (школы А.А.Заварзіна і М.Р.Хлопіна), нейрагісталогія (Б.І.Лаўрэнцьеў, М.А.Міслаўскі і інш.).

На Беларусі развіццё гісталогіі звязана з арганізацыяй кафедры гісталогіі ў БДУ (з 1921). Даследаванні вядуцца ў мед. ін-тах, Ін-це фізіялогіі Нац. АН. У 1920—60-я г. вывучаліся будова і развіццё клетачнага ядра, узаемасувязі морфадынамічных сістэм, што забяспечваюць раздражняльнасць клеткі, абмен рэчываў і энергіі, рост, размнажэнне і палавы працэс (П.А.Маўрадыядзі), працэсы неўратызацыі ўнутр. органаў чалавека і жывёл (П.Я.Герке), інервацыя серозных абалонак і прыдаткавых зародкавых органаў (В.Н.Блюмкін). У 1960—90-я г. даследаваліся марфал. асновы кампенсатарна-прыстасавальных рэакцый у нерв. сістэме, структура нейрасакрэтарных клетак гіпаталамуса (С.М.Мілянкоў), фарміраванне і будова нервовамышачных сувязей у працэсе развіцця (Я.Я.Карытны), органы імуннай сістэмы (А.Ф.Суханаў) і скуры (А.Д.Мядзелец). З 1970-х г. вывучаецца эмбрыянальны морфагенез органаў розных сістэм арганізма, узаемасувязі развіцця ўнутр. органаў і рэгулявальных сістэм (А.А.Арцішэўскі, Я.І.Бальшова, Н.А.Жарыкава, А.С.Леанцюк, Т.М.Малярэвіч, І.А.Мельнікаў і інш.). Распрацаваны метады інфармацыйнага, карэляцыйнага, фрактальнага аналізу біял. сістэм (Леанцюк). Вывучаецца нейрагумаральная рэгуляцыя структуры і хім. арганізацыі страўнікавых залоз (А.А.Турэўскі), мышцаў і клетак крыві (Т.Г.Мацюхіна), гісталогія нерв. сістэмы (А.П.Амвросьеў, Л.І.Арчакова, Д.М.Голуб, У.М.Калюноў, Ф.Б.Хейнман і інш.).

Літ.:

Гистология. 4 изд. М., 1989;

Голуб Д.М. Очерки развития морфологии в БССР // Морфогенез и структура органов человека и животных. Мн., 1970.

А.С.Леанцюк.

т. 5, с. 265

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЕМЛЕТРАСЕ́ННЕ,

падземныя штуршкі і ваганні зямной паверхні, выкліканыя пераважна тэктанічнымі працэсамі, хуткімі зрухамі і разрывамі ў зямной кары ці верхняй ч. мантыі і вызваленнем назапашанай энергіі. З. могуць быць вулканічнага паходжання, зрэдку яны выкліканы дзейнасцю чалавека (запаўненне буйных вадасховішчаў, напампоўванне вады ў глыбокія свідравіны, горныя работы і выбухі).

Тэктанічныя З. прымеркаваны да зон і абласцей сучасных рухаў пліт, на якія разбіта літасфера; каля 95% іх адбываецца па краях такіх пліт, 4—5% — уздоўж сярэднеакіянічных хрыбтоў або ўнутры пліт. Месца ўзнікнення штуршка ў глыбінях Зямлі наз. ачагом З., цэнтр ачага — гіпацэнтр, праекцыя яго на зямную паверхню — эпіцэнтр. Ад ачага З. ва ўсе бакі распаўсюджваюцца сейсмічныя хвалі, сярод іх адрозніваюць падоўжаныя і папярочныя. Па паверхні зямлі ад эпіцэнтра разыходзяцца паверхневыя хвалі. Ачагі З. найчасцей узнікаюць на глыб. да 20—30 км. Энергію З. ацэньваюць велічынёй магнітуды (М) або энергет. класа (К), паверхневы эфект — у балах шкалы інтэнсіўнасці. Паводле міжнар. сейсмічнай шкалы існуюць 12 градацый — балаў. У выніку сейсмічнага раянавання праводзіцца падзел тэрыторыі па ступенях сейсмічнай актыўнасці. Прагноз З. ажыццяўляюць на аснове іх прадвеснікаў. Колькасць З., якія штогод рэгіструюцца на Зямлі сейсмічнымі станцыямі, дасягае соцень тысяч, але толькі малая доля іх выклікае разбурэнні, у т.л. катастрафічныя (напр., у Сан-Францыска ў 1906, Токіо ў 1923, Ашгабадзе ў 1948, Ташкенце ў 1966, Мехіка ў 1985, Арменіі ў 1988). Вывучае З. сейсмалогія.

На тэр. Беларусі З. звязаны з мясц. ачагамі сейсмічнасці або з’яўляюцца адгалоскамі моцных (М да 7,4) З. у Карпатах (напр., у 1977, 1990). Інтэнсіўнасць найб. значных мясц. З. Барысаўскага (1887) і Астравецкага (1908) да 6—7 балаў, Салігорскага (1978) да 5 балаў. Рэгістраваннем З., вывучэннем сейсмічнага рэжыму на тэр. Беларусі, эталоннымі вымярэннямі геафіз. і гідрагеахім. прадвеснікаў З., сейсмічным раянаваннем з 1980 займаецца Доследна-метадычная партыя пры Ін-це геал. навук Нац. АН Беларусі. Рэгіструюць З. станцыі, сеткі сейсмічных назіранняў Нац. АН Беларусі — Мінск, Гомель, Нарач, Салігорск, Плешчаніцы.

Літ.:

Болт Б.А. Землетрясения: Общедоступный очерк: Пер. с англ. М., 1981;

Гир Дж.М., Шах Х.Ч. Зыбкая твердь: Что такое землетрясение и как к нему подготовиться: Пер. с англ. М., 1988.

А.П.Емяльянаў.

т. 7, с. 55

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІЯНАЛО́ГІЯ

(ад акіян + ...логія),

акіянаграфія, сукупнасць навуковых дысцыплін аб фізічных, хімічных, геалагічных і біялагічных працэсах у Сусветным акіяне. Гал. задачы акіяналогіі: высвятленне агульных заканамернасцяў прыроды акіяна, вывучэнне трансфармацыі і абмену рэчываў і энергіі ў акіянскіх водах і ахова іх ад забруджвання, выкарыстанне харчовых, хім. і энергет. рэсурсаў акіяна, распрацоўка доўгатэрміновых прагнозаў надвор’я на Зямлі, папярэджанне катастрафічных з’яў, звязаных з акіянамі, забеспячэнне эфектыўнасці і бяспекі надводнага і падводнага мараплавання.

Першымі даследчыкамі акіянаў былі стараж. мараплаўцы. Стараж.-грэч. вучоныя Герадот, Арыстоцель, Гіпарх і інш. выказвалі меркаванні аб адзінстве Атлантычнага і Індыйскага акіянаў, кругавароце вады ў прыродзе, прылівах і інш. з’явах. Перыяд інтэнсіўнага вывучэння звязаны з эпохай Вял. геагр. адкрыццяў (сярэдзіна 15—18 ст.; Х.Калумб, Ф.Магелан, Дж.Кук і інш.). Важныя вынікі атрыманы рус. Антарктычнай экспедыцыяй Ф.Белінсгаўзена і М.Лазарава на суднах «Усход» і «Мірны» (1820) і першай комплекснай акіянаграфічнай экспедыцыяй на карвеце «Чэленджэр» (1872—76; Дж.Мерэй склаў першую карту акіянскіх глеяў). Даследаванні розных ч. Сусветнага ак. праводзілі С.Макараў на «Віцязі» (1886—89) і ледаколе «Ярмак» (1899, 1901), Ф.Нансен на «Фраме» (1891—96), ням. экспедыцыя на «Метэоры» (1925—27), Антарктычная англ. экспедыцыя на «Дысковеры 11» (1929—39) і інш. Пасля 2-й сусв. вайны акіяналогія становіцца адной з важных навук у сувязі з пачаткам выкарыстання рэсурсаў Сусветнага акіяна. Даследаванні акваторыі акіяна, складанне схемы рэльефу дна праводзяць н.-д. экспедыцыі розных краін (амер. з 1956 «Віма», з 1957 «Атлантык»; рус. з 1957 «Віцязь», з 1967 «Акадэмік Кніповіч», з 1974 «Дзмітрый Мендзялееў» і інш.). Грунтуецца акіяналогія на фактычных даных вымярэнняў, атрыманых з суднаў надвор’я, дрэйфуючых аўтам. гідраметэаралагічных станцый і акіянаграфічных платформаў, штучных спадарожнікаў Зямлі і падводных лабараторый. У сучаснай акіяналогіі пашыраны матэм мадэліраванне фіз., хім. і біял. працэсаў, даследаванне зменлівасці іх на падставе тэорыі імавернасці і матэм. статыстыкі.

Фізіка акіяна даследуе фіз. працэсы ў акіянскіх і марскіх водах, заканамернасці ўзаемадзеяння акіяна і атмасферы; хімія акіяна вывучае хім. ўласцівасці, састаў, фіз. і хім. працэсы водаў; геалогія акіяна — паходжанне ложа акіяна, яго эвалюцыю і будову, рэльеф дна, заканамернасці ўтварэння карысных выкапняў; біялогія акіяна — жывёльны і раслінны свет акіянаў і мораў, фарміраванне біял. прадукцыйнасці акіянскіх і марскіх водаў. Вылучаюць акіяналогію рэгіянальную, якая займаецца фізіка-геагр. і эканоміка-геагр. даследаваннем акіянаў і мораў; прамысловую, звязаную з акіяналагічным забеспячэннем марскіх промыслаў; спадарожнікавую (касмічную), якая атрымлівае вымярэнні разнастайных параметраў акіяна са штучных спадарожнікаў. Акіянскія даследаванні каардынуюцца Навук. к-там па акіянскіх даследаваннях, Міждзярж. акіянаграфічнай камісіяй пры ЮНЕСКА, нац. гідраметэацэнтрамі і н.-д. Ін-тамі.

А.М.Вітчанка.

т. 1, с. 194

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАТЭХНІ́ЧНЫЯ ЗБУДАВА́ННІ,

інжынерныя збудаванні для выкарыстання водных рэсурсаў або барацьбы са шкодным уздзеяннем воднай стыхіі. Бываюць агульныя (выкарыстоўваюцца ў розных галінах воднай гаспадаркі) і спецыяльныя (у адной галіне). Агульныя гідратэхнічныя збудаванні: водападпорныя (плаціны, дамбы); водапрапускныя (водазаборныя збудаванні, вадаскіды, у т. л. вадазлівы і вадаспускі, вадаводы, у т. л. трубаправоды, гідратэхнічныя тунэлі, каналы, латакі) і рэгуляцыйныя збудаванні (гаці, паўгаці, агараджальныя валы, донныя парогі, берагаўмацавальныя збудаванні і інш.). Спецыяльныя гідратэхнічныя збудаванні: збудаванні для выкарыстання энергіі вады (будынкі гідраэлектрычных станцый, напорныя басейны, ураўняльныя рэзервуары і інш.); збудаванні воднага транспарту (суднаходныя шлюзы, суднападымальнікі, докі, прычалы, пірсы, лесаспускі і інш.); рыбагаспадарчыя (рыбапрапускныя збудаванні, рыбападымальнікі, рыбаводныя сажалкі і інш.); гідрамеліярацыйныя збудаванні; збудаванні для водазабеспячэння і каналізацыі (помпавыя станцыі, воданапорныя вежы, каптажы, ачышчальныя збудаванні, у т. л. аэратэнкі і інш.).

Гідратэхнічныя збудаванні падзяляюцца таксама на рачныя, азёрныя, марскія і сеткавыя (размешчаныя на каналах асушальных, арашальных і абвадняльных сістэм); наземныя і падземныя. Пры неабходнасці іх аб’ядноўваюць у гідравузлы. У залежнасці ад асн. матэрыялу, з якога ўзводзяцца гідратэхнічныя збудаванні, адрозніваюць земляныя, каменныя, каменна-земляныя, бетонныя, жалезабетонныя, драўляныя, металічныя, з прагумаваных тканін і з сінт. матэрыялаў; у залежнасці ад спосабу ўзвядзення — насыпныя, намыўныя, выбухова-накідныя (робяцца накіраваным выбухам), маналітныя, зборныя і камбінаваныя. Пастаянныя гідратэхнічныя збудаванні (выкарыстоўваюцца на працягу ўсяго перыяду эксплуатацыі) падзяляюцца на 4 класы капітальнасці, часовыя (выкарыстоўваюцца толькі ў перыяд буд-ва і рамонтаў, напр. перамычкі, адвадныя каналы і тунэлі, свідравіны для паніжэння ўзроўню грунтавых вод) адносяцца да 5-га класа. Буд-ва і выкарыстанне гідратэхнічных збудаванняў складаецца з 4 этапаў: вышуканні (вывучэнне рэльефу мясцовасці ў раёне буд-ва, гідралагічных характарыстык вадацёку, геал. будовы, клімату і інш.); праектавання (вызначэнне на аснове даных вышуканняў і водагасп. задачы асн. памераў і матэрыялаў збудаванняў, іх разлікі, выбар метадаў буд-ва); арганізацыя і правядзенне буд. работ у адпаведнасці з праектам збудаванняў; эксплуатацыя гідратэхнічных збудаванняў (кіраванне іх работай, нагляд за станам, бягучыя і капітальныя рамонты). Пры праектаванні выконваюць гідраўлічныя, гідратэхн. (фільтрацыйныя) і статычныя разлікі. Для адказных гідратэхнічных збудаванняў пры праектаванні робяць таксама лабараторныя даследаванні на мадэлях.

На Беларусі даследаванні і распрацоўку метадаў разліку гідратэхнічных збудаванняў вядуць Цэнтр. НДІ комплекснага выкарыстання водных рэсурсаў, Бел. НДІ меліярацыі і лугаводства, БПА і інш. Гл. таксама Гідратэхніка, Гідратэхнічнае будаўніцтва.

Літ.:

Чугаев Р.Р. Гидротехнические сооружения. Ч. 1—2. 2 изд. М., 1985;

Гидротехнические сооружения: Справ. проектировщика. М, 1983;

Гидротехнические сооружения. М., 1985.

Г.Г.Круглоў.

т. 5, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)