БРЭ́СЦКІ МУЗЫ́ЧНЫ КАЛЕ́ДЖ.

Засн. ў 1940 у Брэсце як муз. вучылішча. З 1993 каледж. Спецыяльнасці (1995/96 навуч. г.): нар. інструменты; спевы, струнныя, духавыя і ўдарныя інструменты; тэорыя музыкі; фартэпіяна; хар. дырыжыраванне. Прымае асоб з базавай і сярэдняй адукацыяй. Навучанне дзённае. Пры каледжы працуюць: дзіцячая муз. школа з прафарыентацыяй (з 1994); хор, аркестры (бел. і рус. нар. інструментаў, духавы, сімфанічны).

Г.В.Сегянюк.

т. 3, с. 297

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БА́ЕР (Baeyer) Адольф

(31.10.1835, Берлін — 20.8.1917),

нямецкі хімік. Скончыў Берлінскі ун-т (1858). З 1872 праф. Страсбургскага, з 1875 Мюнхенскага ун-таў. Ажыццявіў поўны сінтэз індыга і ўстанавіў яго будову (1878—83). Даследаваў фталевыя, тэрпенавыя, пераксідныя, нітроза- і аксоніевыя злучэнні. Стварыў тэорыю напружанасці цыклічных злучэнняў (Баера тэорыя), якая тлумачыць іх стабільнасць. У 1910 уведзены памятны медаль Баера за дасягненні ў галіне арган. хіміі. Нобелеўская прэмія 1905.

т. 2, с. 216

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫПАДКО́ВАЯ ВЕЛІЧЫНЯ́ ў тэорыі імавернасцей, велічыня, якая прымае ў залежнасці ад выпадковага зыходу выпрабавання тыя ці іншыя значэнні з пэўнымі імавернасцямі. Напр., лік ачкоў, што выпадаюць на верхняй грані ігральнай косці, — выпадковая велічыня, якая прымае значэнні 1, 2, 3, 4, 5, 6 і з імавернасцю ​1/6 кожнае. Выпадковая велічыня поўнасцю характарызуецца адпаведным размеркаваннем імавернасцей. Асн. характарыстыкі выпадковай велічыні — матэматычнае чаканне і дысперсія. Гл. таксама Імавернасцей тэорыя.

т. 4, с. 317

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«Гармонія інтарэсаў» (бурж. тэорыя) 1/28; 2/176; 3/363; 4/102; 6/229; 7/420

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНАЯ ГЕАМЕ́ТРЫЯ,

раздзел матэматыкі, які вывучае геаметрычныя аб’екты, звязаныя алг. ўраўненнямі, — алг. мнагастайнасці. Узнікла ў 17 ст. з увядзеннем у геаметрыю паняцця каардынат. У сярэдзіне 19 ст. алгебраічная геаметрыя выдзелілася з матэм. аналізу як тэорыя алг. крывых. У канцы 19 ст. італьян. вучоныя К.Сегрэ, Л.Крэмона і інш. стварылі тэорыю алг. паверхняў. У 1930-я г. матэматыкі галандскі Б.Л.Ван-дэр-Вардэн, ням. Г.Гасе і франц. А.Вейль стварылі асновы алгебраічнай геаметрыі над адвольным полем К. Падабенства тэорыі алг. крывых і тэорыі алг. лікаў стымулявала пошукі агульнай алг. асновы (амер. вучоны О.Зарыскі, франц. матэматыкі К.Шэвале і Ж.Сер). Асновай стала тэорыя схем (франц. матэматык А.Гратэндзік), дзе, напр., на геам. мове разглядаліся сістэмы алг. ураўненняў над адвольным камутатыўным кольцам, апісваліся ўласцівасці праектыўных мнагастайнасцяў. Алгебраічная геаметрыя звязана з тэорыяй функцый камплексных пераменных, лікаў тэорыяй, ураўненнямі матэматычнай фізікі і інш.

Літ.:

Шафаревич И.Р. Основы алгебраической геометрии. 2 изд. Т. 1—2. М., 1988;

Гриффитс Ф., Харрис Дж. Принципы алгебраической геометрии: Пер. с англ. Т. 1—2. М., 1982.

В.А.Ліпніцкі.

т. 1, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БО́РА РА́ДЫУС,

радыус найбліжэйшай да ядра (пратона) арбіты электрона ў мадэлі атама вадароду Н.Бора. Абазначаецца a0 · a0 = ħ me2 = 5,2917706(44) · 10−11 м, дзе ħ = h , h — Планка пастаянная, m і e — маса і зарад электрона. У квантавай механіцы Бора радыус вызначаецца як адлегласць ад ядра, на якой з найбольшай імавернасцю можна выявіць электрон у няўзбуджаным атаме вадароду. Гл. таксама Бора тэорыя.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́ЛЬСАН, Уілсан (Wilson) Кенет Гедэс (н. 8.6.1936, г. Уолтэм, ЗША), амерыканскі фізік-тэарэтык. Чл. Нацыянальнай АН. Скончыў Гарвардскі ун-т (1956), дзе працаваў у 1959—62. З 1963 у Корнелскім ун-це (з 1971 праф.). Навук. працы па квантавай тэорыі поля, тэорыі элементарных часціц і стат. фізіцы. Прапанаваў тэорыю фазавых пераходаў другога роду (тэорыя Вільсана), у якой даў дакладнае тлумачэнне тэмпературнай залежнасці цеплаёмістасці пры малых тэмпературах. Нобелеўская прэмія 1982.

т. 4, с. 176

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫПАДКО́ВАЯ ПАДЗЕ́Я ў тэорыі імавернасцей,

падзея, якая пры выкананні пэўных умоў (правядзенні выпрабавання) можа як адбыцца, так і не адбыцца і для якой існуе пэўная імавернасць яе наступлення. Наяўнасць у выпадковай падзеі A пэўнай імавернасці p (0 ≤ p ≤ 1) тлумачыцца паводзінамі яе частаты: калі названае выпрабаванне ажыццяўляецца n разоў, а A з’яўляецца пры гэтым m разоў, то пры вялікіх n частата mn аказваецца блізкая да p. Гл. таксама Імавернасцей тэорыя.

т. 4, с. 317

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНЫ АНА́ЛІЗ,

раздзел вектарнага злічэння, у якім сродкамі матэм. аналізу вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў (вектарныя і скалярныя палі). Асновы вектарнага аналізу закладзены ў канцы 19 ст. ў працах Дж.Гібса і О.Хевісайда. Асн. дыферэнцыяльныя аперацыі: градыент скалярнага поля, дывергенцыя і ротар вектарнага поля; інтэгральныя аперацыі (паток вектара праз зададзеную паверхню і цыркуляцыя ўздоўж зададзенай крывой). Гл. Астраградскага формула, Стокса формула, Грына формула, Поля тэорыя.

т. 4, с. 64

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЕ́НТНАЯ ЗО́НА,

энергетычная вобласць дазволеных электронных станаў у цвёрдым целе. Пры т-ры абсалютнага нуля цалкам запоўнена валентнымі электронамі (гл. Зонная тэорыя). Пад уплывам цеплавога руху, знешніх уздзеянняў (асвятленне, апрамяненне, увядзенне прымесяў і інш.) невял. частка электронаў пераходзіць з валентнай зоны ў зону праводнасці ці на прымесныя ўзроўні ў забароненай зоне. У выніку ў валентнай зоне з’яўляюцца незапоўненыя электронныя станы (дзіркі) і электроны валентнай зоны могуць удзельнічаць у электраправоднасці.

т. 3, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)