БЕТО́Н

(франц. béton ад лац. bitumen горная смала),

штучны буд. матэрыял, які атрымліваецца пасля фармавання і цвярдзення сумесі вяжучага рэчыва (з вадой ці без яе), напаўняльнікаў і (пры неабходнасці) спец. дабавак. Вяжучае — звычайна цэмент, запаўняльнікі — пясок, жвір, пемза, туф, ракушачнік ці керамзіт, аглапарыт. Бетонная сумесь набывае трываласць пры дадатных т-рах у прыродных умовах каля месяца, пасля тэрмаапрацоўкі — за 8—10 гадз (пры адмоўных т-рах робяць пара- і электрапрагрэў).

Бетоны бываюць на неарганічных (цэментны і сілікатны бетоны, гіпсабетон і інш.) і арганічных (асфальтабетон, палімербетон) вяжучых. У залежнасці ад аб’ёмнай шчыльнасці (у кг/м³) бетоны падзяляюць на асабліва цяжкі (больш за 2500), цяжкі (ад 1800 да 2500), лёгкі (ад 500 да 1800), асабліва лёгкі (менш за 500). Па прызначэнні адрозніваюць бетоны канструкцыйныя, канструкцыйна-цеплаізаляцыйныя, цеплаізаляцыйныя і спецыяльныя (гарачаўстойлівыя, кіслотатрывалыя, дарожныя і да т.п.). Асноўная ўласцівасць бетону — трываласць, якая характарызуецца яго маркай (бывае ад 50 да 800). Бетоны ідуць на бетонныя вырабы і канструкцыі, жалезабетонныя вырабы і канструкцыі, збудаванні.

На Беларусі распрацаваны і ўкаранёны ў вытв-сць тэхналогіі прыгатавання лёгкага аглапарытабетону (гарачаўстойлівы), аглапарытасілікатабетону (канструкцыйны і цеплаізаляцыйны матэрыял), палімерцэментнага бетону (мае павышаную дэфармавальнасць, зносаўстойлівасць, устойлівы да хім. агрэсіўных асяроддзяў), палімербетонаў (каразійна-, зноса- і марозаўстойлівы), буйнапорыстага бетону (цеплаізаляцыйны і фільтравальны матэрыял), цэнтрыфугаванага бетону (ідзе на выраб танкасценных трубаў, калон, паляў і інш.) і ячэістага бетону (мае нізкую вільгацепаглынальнасць, не патрабуе параізаляцыйнага слоя).

т. 3, с. 130

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСА́ДКАВЫЯ ГО́РНЫЯ ПАРО́ДЫ,

горныя пароды, якія ўтвараюцца асаджэннем рэчыва ў водным асяроддзі, радзей з паветра і ў выніку дзейнасці ледавікоў. У залежнасці ад характару асаджэння падзяляюцца на абломкавыя, хім. і арганагенныя (біягенныя). Утвараюць пласты, слаі, лінзы і інш. геал. целы рознай формы і памераў, якія залягаюць у зямной кары гарызантальна, нахільна або ў выглядзе складаных складак. Адрозніваюць больш як 10 груп асадкавых горных парод: абломкавыя, гліністыя, глаўканітавыя, гліназёмістыя, жалезістыя, фасфатныя, марганцавыя, карбанатныя, солі, каўстабіяліты і інш., а таксама мяшаныя вулканагенна-асадкавыя пароды. Сярод асадкавых горных парод пераважаюць гліністыя (гліны, аргіліты, гліністыя сланцы — каля 50%), пясчаныя (пяскі і пясчанікі) і карбанатныя (вапнякі, даламіты і інш.; разам каля 45%), астатнія тыпы (солі і інш.) складаюць менш за 5%. Утварэнне і размяшчэнне на зямной паверхні асадкавых горных парод (асадканамнажэнне) вызначаецца пераважна кліматычнымі і тэктанічнымі ўмовамі, мае перыядычны характар і падобныя ўмовы ў мінулыя геал. эпохі і ў сучаснасці. Асадкавыя горныя пароды складаюць каля 10% масы зямной кары, укрываюць 75% паверхні Зямлі. Асн. іх маса сканцэнтравана на мацерыках (752 млн. км³), шэльфах і кантынентальных схілах (158 млн. км³), менш на дне акіянаў (190 млн. км³). Многія асадкавыя горныя пароды — карысныя выкапні (нафта, прыродны газ, вугаль, фасфарыты, баксіты, вапнякі, нярудныя буд. матэрыялы). Пашыраны на ўсёй тэр. Беларусі, асабліва гліны, алеўраліты, пяскі, каменная і калійная солі, ангідрыт, вапнякі, даламіты, мергелі, мел.

Літ.:

Материалы по стратиграфии Белоруссии: (к Межведомств. стратигр. Совещанию, Минск, октябрь, 1981 г.). Мн., 1981;

Логвиненко Н.В. Петрографяя осадочных пород с основами методики исследования. 3 изд. М., 1984.

т. 2, с. 19

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАГРАФІ́ЧНАЯ АБАЛО́НКА,

ландшафтная абалонка, цэласная абалонка Зямлі, якая ахоплівае верхнюю ч. літасферы, ніжнія слаі атмасферы, біясферу і гідрасферу; адна са сфер Зямлі (гл. Геасфера). Тэрмін прапанаваў сав. географ А.А.Грыгор’еў (1932). Часткі геаграфічнай абалонкі знаходзяцца ў цесным узаемадзеянні, пранікаюць адна ў адну і ўтвараюць адзіную сістэму, для якой характэрна самаразвіццё і адносная раўнавага. Таўшчыня геаграфічнай абалонкі каля 40 км. Адрозніваецца ад інш. частак планеты наяўнасцю жыцця, рэчыва ў трох станах (цвёрдым, вадкім і газападобным), найб. разнастайнасцю відаў і багаццем свабоднай энергіі. У геаграфічнай абалонцы працякаюць экзагенныя і эндагенныя працэсы. Экзагенныя ўтвараюцца ў першую чаргу пад уздзеяннем сонечнай энергіі, нераўнамернае размеркаванне якой на паверхні Зямлі выклікае дыферэнцыяцыю прыродных умоў і ўтварэнне геагр. паясоў, прыродных зон. Для геаграфічнай абалонкі характэрна і рэгіянальная дыферэнцыяцыя, выкліканая формай Зямлі, рознай вышынёй паверхні Зямлі, аддаленасцю ад акіянаў і інш. Эндагенныя працэсы абумоўлены ўнутр. цяплом Зямлі, вулканічнымі, тэктанічнымі і інш. сіламі. З імі звязана ўтварэнне кантынентаў, акіянаў, гор і інш. Заканамернасці геаграфічнай абалонкі: цыклічнасць (рытмічнасць) працякання прыродных працэсаў; кругавароты рэчываў — цыркуляцыя атмасферы, марскія цячэнні, кругаварот вады, біял. кругаварот і інш.; шыротная занальнасць і вышынная пояснасць ландшафтаў. У сувязі з ростам уздзеяння вытв. дзейнасці чалавека на прыроду ў складзе геаграфічнай абалонкі з 1970-х г. пачалі вылучаць сацыясферу і тэхнасферу. Паводле тэорыі В.І.Вярнадскага, у выніку разумнага ўздзеяння чалавека на геаграфічную абалонку яна можа перайсці ў вышэйшую стадыю свайго развіцця — наасферу. Геаграфічную абалонку вывучаюць фізічная геаграфія і землязнаўства.

В.С.Аношка.

т. 5, с. 110

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛЕ́БАВАЯ МІКРАБІЯЛО́ГІЯ,

раздзел мікрабіялогіі, які вывучае склад і функцыі мікрабіяцэнозаў глеб, іх сувязь з раслінамі і ролю ў трансфармацыі арган. і мінер. рэчываў глеб. Даследуе ролю мікраарганізмаў у павышэнні ўрадлівасці глебы, у жыўленні раслін, распрацоўвае спосабы прыгатавання бактэрыяльных угнаенняў і сіласавання кармоў. Цесна звязана з глебавай энзімалогіяй, біяхіміяй, глебазнаўствам.

Як навука сфарміравалася ў канцы 19 — пач. 20 ст. У яе развіцці важную ролю адыгралі працы нідэрл. вучонага М.Беерынка, які вылучыў і апісаў чыстыя культуры азотфіксавальных клубеньчыкавых бактэрый (1888) і азотабактэру (1901), рус. вучоных С.М.Вінаградскага (адкрыў з’яву хемасінтэзу), М.А.Красільнікава (працы па мікрафлоры глебы) і інш.

На Беларусі развіваецца з 1930-х г. З 1950-х г. даследаванні па глебавай мікрабіялогіі вядуцца ў НДІ глебазнаўства і аграхіміі, земляробства і кармоў, меліярацыі і лугаводства, у Нац. АН, БДУ, БСГА і інш. Асн. кірункі даследаванняў: узаемаадносіны мікраарганізмаў глебы і вышэйшых раслін, працэсы біял. фіксацыі атм. азоту, уплыў акультурвання глеб на мікробны цэноз (С.А.Самцэвіч), мікрафлора асн. тыпаў лясоў, глеб Палескай ніз. (П.П.Рагавой, М.І.Мільто, Г.І.Язубчык), мікрабіял. працэсы мінералізацыі арган. рэчыва тарфяна-балотных глеб пад уплывам меліярацыі і мех. апрацоўкі глебы (Ф.П.Вавула, Т.Г.Зіменка, Н.М.Курбатава-Белікава і інш.), уздзеянне экалагічных фактараў (цяжкія металы, пестыцыды, прамысл. адходы і радыенукліды) на мікраарганізмы глебы (В.І.Калешка, А.І.Двайнішнікава, Зіменка, А.С.Самсонава, Н.В.Гаўрылкіна, А.Г.Міснік, Л.А.Карагіна, Т.І.Каляда і інш.). Пытанням стварэння і выкарыстання бактэрыяльных прэпаратаў у раслінаводстве прысвечаны працы Зіменкі, Мільто, М.А.Троіцкага, Карагінай і інш. Гал. Задача глебавай мікрабіялогіі ў сучасных умовах — энергазберагальная біялагізацыя раслінаводства, накіраваная на зніжэнне ўзроўню выкарыстання сродкаў хімізацыі і атрыманне чыстай прадукцыі.

Т.Г.Зіменка.

т. 5, с. 289

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШНО́ВЫЯ ЗО́РКІ,

зоркі, якія характарызуюцца гіганцкімі ўспышкамі — скачкападобным павелічэннем бляску ў сотні мільёнаў разоў; крыніцы касм. прамянёў.

Успышкі зорак назіраліся з глыбокай старажытнасці. Вывучэнне іх пачата Ц.Браге, які апісаў успышку зоркі ў сузор’і Касіяпеі ў 1572. Зараз фатаграфічна зарэгістравана больш за 300 успышак З.з. у інш. галактыках. З.з. ўспыхваюць у розных галактыках прыблізна 1 раз у 360 гадоў. Пры ўспышцы З.з. яркасць яе за 10—20 сутак робіцца параўнальнай з сумарнай яркасцю ўсёй зорнай сістэмы — галактыкі, унутры якой знаходзіцца гэтая зорка. Агульная энергія, што выпрамяняецца за час успышкі, перавышае 10​48 эрг. Успышка адбываецца, калі зорка зыходзіць з галоўнай паслядоўнасці Герцшпрунга—Рэсела дыяграмы і ўступае ў заключны этап эвалюцыі. Да выбуху З.з. прыводзіць гравітацыйны калапс. Пасля выбуху цэнтр. частка зоркі становіцца нейтроннай зоркай, а рэчыва знешніх слаёў выкідваецца са скорасцю ў некалькі тысяч кіламетраў за секунду і ўтварае газавую туманнасць (гл., напр., Крабападобная туманнасць). Па характары змены бляску і спектра З.з. падзяляюць на 2 тыпы. Да 1-га тыпу адносяцца вельмі старыя зоркі (да выбуху), маса якіх параўнальная з сонечнай. Паніжэнне бляску пасля максімуму праходзіць раўнамерна, спектры складаюцца з вельмі шырокіх палос. 2-і тып; маладыя зоркі з масай у 10 разоў большай за сонечную, вял. разнастайнасць у характары зніжэння бляску пасля максімуму, палосы ў спектрах ствараюцца выпрамяненнем атамаў H, He, N і інш.

Літ.:

Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.

А.А.Шымбалёў.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАЎНЫ́ МОЗГ,

пярэдні аддзел цэнтральнай нервовай сістэмы пазваночных жывёл і чалавека, размешчаны ў поласці чэрапа; матэрыяльная аснова вышэйшай нервовай дзейнасці, галоўны рэгулятар усіх жыццёвых функцый арганізма і яго ўзаемаадносін з навакольным асяроддзем.

Філагенетычна галаўны мозг фарміраваўся па шляху ўскладнення будовы і функцый пярэдняга канца нервовай трубкі ў цеснай сувязі з развіццём органаў пачуццяў (гл. ў арт. Цэфалізацыя). У беспазваночных яго ролю выконвае галаўны ганглій, асабліва развіты ў вышэйшых насякомых і малюскаў. Прымітыўны галаўны мозг вылучаецца ў папярэдніка пазваночных — ланцэтніка. У пазваночных жывёл ён ускладняўся з дыферэнцыяцыяй на аддзелы. Сапраўдны галаўны мозг упершыню выявіўся ў кругларотых з падзелам яго на слабадыферэнцыраваны пярэдні мозг (забяспечвае функцыю нюху), сярэдні мозг (уключае вышэйшыя зрокавыя цэнтры), задні мозг (з пачатковай дыферэнцыяцыяй на прадаўгаваты мозг і мазжачок). У рыб інтэнсіўна развіваецца і мазжачок. Выхад пазваночных на сушу абумовіў пераразмеркаванне ролі асобных аддзелаў галаўнога мозга: у земнаводных і рэптылій аб’ёмная доля задняга мозга невялікая, у павялічаным сярэднім мозгу з’яўляюцца адпаведна двух- і чатырохбугор’е; у рэптылій пярэдні мозг дыферэнцыруецца на прамежкавы мозг і 2 паўшар’і канцавога мозга. У птушак развіваюцца глыбокія аддзелы пярэдняга мозга і мазжачок; у млекакормячых — кара вялікіх паўшар’яў (пярэдні і задні мозг дыферэнцыруецца). Антагенетычна галаўны мозг — вытворнае мазгавых пузыроў, поласці якіх развіваюцца ў жалудачкі мозга;эвалюцыйнае ўскладненне будовы галаўнога мозга прасочваецца ў працэсе эмбрыянальнага развіцця жывёл.

У чалавека галаўны мозг дасягнуў найвышэйшай ступені развіцця за кошт павелічэння масы, ускладнення будовы і функцый вял. паўшар’яў, марфал. і функцыян. злучаных пучком нерв. валокнаў — мазолістым целам. Ніжнія аддзелы галаўнога мозга ўтвараюць ствол мозга, які пераходзіць у спінны мозг. Вялікія паўшар’і, падзеленыя глыбокай шчылінай на правае і левае, утвараюць вялікі, або канцавы мозг — аддзел галаўнога мозга, большы за ўсе астатнія. Паверхня яго ў чалавека і буйных жывёл мае звіліны і барозны (у чалавека самыя глыбокія падзяляюць паўшар’і на долі — лобную, цемянную, скроневую, патылічную), у дробных — гладкая. Верхні слой вял. мозга складаецца з шэрага рэчыва (у чалавека таўшчыня слоя 1—5 мм, пераважна нерв. клеткі), ніжэй знаходзіцца белае рэчыва (пераважна нерв. валокны), у тоўшчы якога вылучаюцца падкоркавыя вузлы, або базальныя гангліі (важнейшыя — паласатае цела, бледны шар), утвораныя шэрым рэчывам. У склад усіх структур галаўнога мозга ўваходзіць нейраглія. Да функцыянальна важных утварэнняў галаўнога мозга належаць таламус, гіпаталамус, эпіталамус, лімбічная сістэма і інш. Зверху галаўны мозг пакрыты цвёрдай павуціннай і мяккай мазгавымі абалонкамі, прастора паміж якімі запоўнена цэрэбраспінальнай вадкасцю. Кровазабеспячэнне галаўнога мозга адбываецца праз пазваночныя і ўнутр. сонныя артэрыі. Адзін з асн. прынцыпаў работы галаўнога мозга — безумоўныя і ўмоўныя рэфлексы, якія рэалізуюцца з удзелам экстрапіраміднай сістэмы і піраміднай сістэмы (ёсць толькі ў млекакормячых, найб. развітая ў малпаў і чалавека). Паміж часткамі галаўнога мозга назіраецца двух- і шматбаковая сувязь. Аналіз і сінтэз, перапрацоўка, захоўванне і выдача атрыманай ад рэцэптараў інфармацыі ажыццяўляюцца ў канцавым мозгу (кара вял. паўшар’яў, падкоркавыя структуры). Ацэнка інфармацыі магчыма дзякуючы працэсам памяці. Праз зыходныя ўплывы галаўны мозг кантралюе ўзбуджальнасць рэфлекторных аддзелаў спіннога мозга (гл. Вегетатыўная нервовая сістэма). У кары галаўнога мозга знаходзяцца цэнтры кіравання складанымі рухальнымі актамі, у прадаўгаватым — дыхання, сардэчнай дзейнасці, сасударасшыральны, глытання, жавання, сакрэцыі стрававальных залоз, потавыдзялення, рэгуляцыі мышачнага тонусу, кашлю і інш. Нерв. цэнтры шэрага рэчыва экраннага тыпу працуюць па прынцыпе дывергенцыі, нерв. цэнтры стваловай часткі ядзернага тыпу — па прынцыпе канвергенцыі. Гіпаталамус — вышэйшы цэнтр рэгуляцыі вегетатыўных функцый, месца ўзаемадзеяння нерв. і эндакрыннай сістэм, эпіталамус — цыркадных рытмаў. Нармальная работа галаўнога мозга магчыма пры пэўным узроўні ўзбуджальнасці яго асн. аддзелаў, які падтрымліваецца праз рэтыкулярную фармацыю, сімпатычную нервовую сістэму, мазжачок і спецыфічныя шляхі, што ідуць ад органаў пачуццяў, праз механізмы самарэгуляцыі тонусу кары вял. паўшар’яў. Здольнасць галаўнога мозга перапрацоўваць інфармацыю і ўвасабляць яе ў пэўныя рэакцыі арганізма забяспечвае ўсе віды вышэйшай нерв. дзейнасці, у т. л. мысленне, свядомасць. Функцыі галаўнога мозга могуць парушацца пры шкодных уздзеяннях (мех., фіз., хім., радыяцыйных) на яго ў цэлым або на пэўны ўчастак. Значную ролю ва ўзнікненні паталогіі галаўнога мозга маюць заганы развіцця ці пашкоджанні нерв. сістэмы ў перыяд эмбрыягенезу, расстройствы мазгавога кровазвароту (пры інсультах, атэрасклерозе, гіпертанічнай хваробе, анеўрызмах), запаленчыя працэсы (пры абсцэсах, арахнаідыце, менінгіце, менінгаэнцэфаліце, энцэфаліце), інфекц. і паразітарныя фактары (пры цыстыцэркозе, сіфілісе, эхінакакозе і інш.), чэрапна-мазгавыя траўмы, функцыян. расстройствы, парушэнні працэсаў самарэгуляцыі галаўнога мозга (неўрозы, псіхічныя хваробы і расстройствы) і інш.

Па агульнай сярэдняй масе галаўны мозг дарослага чалавека (прыкладна 1500 г пры аб’ёме каля 1500 см³ і плошчы паверхні 1600—2000 см²) саступае толькі галаўному мозгу слана (каля 5700 т) і кіта (6000—7000 г). Адносная яго сярэдняя маса ў дачыненні да агульнай масы цела, т.зв. паказчык Рагінскага, у галаўнога мозга чалавека найвышэйшая — 32; у дэльфінаў — 16, у сланоў — 10,4, у малпаў — 2—4. Прамой залежнасці паміж памерамі галаўнога мозга і яго здольнасцямі да ажыццяўлення вышэйшай нерв. дзейнасці не ўстаноўлена.

Літ.:

Мозг: Пер. з англ. М., 1984.

Я.В.Малашэвіч.

т. 4, с. 453

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАНО́МІЯ

(ад астра... + грэч. nomos закон),

навука пра рух, будову, паходжанне і развіццё касм. целаў, іх сістэм і Сусвету ў цэлым. Вывучае розныя аб’екты: планеты і іх спадарожнікі, каметы і метэорнае рэчыва, зоркі, зорныя сістэмы (галактыкі), міжзорны газ і дыфузнае рэчыва, рассеянае ў касм. прасторы, эл.-магн. выпрамяненне нябесных целаў. Асн. раздзелы астраноміі: астраметрыя, астрафізіка, зорная астраномія, касмагонія, касмалогія, нябесная механіка, пазагалактычная астраномія, радыёастраномія.

Астраномія ўзнікла ў глыбокай старажытнасці з практычных патрэб чалавецтва. Рух Месяца, планет і сузор’яў дапамагаў вызначаць прамежкі часу і змены пораў года, весці каляндар, арыентавацца на мясцовасці. Практычны характар астр. ведаў адлюстраваўся ў нар. назвах касм. аб’ектаў (напр., Млечны Шлях — «Птушыны Шлях», планета Венера — «Вечарніца» і інш.) і ў стварэнні найпрасцейшых аграрна-астр. «абсерваторый». Адно з такіх збудаванняў дахрысціянскіх часоў з арыентаваных валуноў выяўлена і на Беларусі каля воз. Янова ў Полацкім раёне. Астраномія паспяхова развівалася ў Вавілоне, Егіпце, Стараж. Грэцыі, Індыі і Кітаі. Стараж.-грэч. вучоны Пталамей распрацаваў у 2 ст. геацэнтрычную сістэму свету, якая была агульнапрынятай амаль 1,5 тыс. гадоў. У сярэднія вякі астраномія дасягнула значнага развіцця ў дзяржавах Усходу. У 15 ст. Улугбек пабудаваў паблізу Самарканда астр. абсерваторыю з дастаткова дакладнымі на той час вугламернымі інструментамі. Узнікненне сучаснай астраноміі звязана са стварэннем геліяцэнтрычнай сістэмы свету (М.Капернік, 16 ст.), вынаходствам тэлескопа (Г.Галілей, пач. 17 ст.), адкрыццём законаў руху планет (І.Кеплер, пач. 17 ст.) і сусветнага прыцягнення закону (І.Ньютан, канец 17 ст.).

У 18 — пач. 20 ст. назіральная астраномія атрымала шматлікія звесткі пра Сонечную сістэму, фіз. прыроду зорак і інш. касм. аб’ектаў, што спрыяла стварэнню навук. карціны свету. Выкарыстанне ў астр. даследаваннях метадаў спектраскапіі, фатаграфіі і фотаметрыі прывяло да ўзнікнення астрафізікі. Вялікае значэнне мела заснаванне многіх астранамічных абсерваторый, удасканаленне астранамічных інструментаў і прылад, складанне зорных каталогаў з указаннем дакладных каардынат зорак. Гэтыя дасягненні астраноміі звязаны з працамі У.Гершэля (Вялікабрытанія), Ж.Лагранжа, П.Лапласа, У.Левер’е (Францыя), М.В.Ламаносава, В.Я.Струве, Ф.А.Брадзіхіна (Расія), К.Доплера (Аўстрыя) і інш. Значны ўклад у назіральную астраномію і астрафіз. метады даследавання зрабілі астраномы Віленскай астранамічнай абсерваторыі і астраномы — выхадцы з Беларусі: С.М.Блажко, Дз.І.Дубяга, Г.А.Ціхаў, В.К.Цэраскі. Астр. даследаванні ў б. СССР звязаны з працамі В.А.Амбарцумяна, А.А.Белапольскага, С.У.Арлова, Я.К.Харадзе і інш. Даследаванні спектраў галактык дазволілі Э.Хаблу (ЗША) выявіць у 1929 агульнае расшырэнне Сусвету, прадказанае рас. вучоным А.А.Фрыдманам (1922) на падставе тэорыі гравітацыі А.Эйнштэйна (1915—16). Сярэдзіна 20 ст. характарызавалася з’яўленнем новых сродкаў назірання і выкарыстаннем касм. тэхнікі, што значна расшырыла магчымасці астр. даследаванняў. Стварэнне аптычных і радыётэлескопаў з высокай раздзяляльнай здольнасцю, выкарыстанне штучных спадарожнікаў Зямлі, ракет, а таксама аптычных і электронных сістэм, у стварэнні якіх бралі ўдзел вучоныя Беларусі, дало магчымасць у 1960—80 выявіць і даследаваць новыя касм. аб’екты: радыёгалактыкі, квазары, пульсары, крыніцы рэнтгенаўскага і нейтрыннага выпрамяненняў. Астраномія стала эксперыментальнай навукай, здольнай непасрэдна даследаваць касм. прастору, вывучаць Месяц і бліжэйшыя планеты. З дапамогай касм. апаратаў (напр., «Венера», «Марс», «Меркурый», «Рэйнджэр» і інш.) атрыманы фотаздымкі Месяца і амаль усіх планет Сонечнай сістэмы (акрамя Плутона), адкрыты новыя спадарожнікі планет, кольцы вакол планет-гігантаў, сфатаграфавана ядро каметы Галея.

Літ.:

Бакулин П.М., Кононович Э.В., Мороз В.И. Курс обшей астрономии. 5 изд. М., 1983;

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Климишин И.А. Астрономия наших дней. 3 изд. М., 1986;

Паннекук А. История астрономии: Пер. с англ. М., 1966.

А.А.Навіцкі.

т. 2, с. 52

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́ЛІЙ

(лац. Helium),

Не, хімічны элемент VII групы перыядычнай сістэмы, ат. н. 2, ат. м. 4,0026. Прыродны гелій складаецца з 2 стабільных ізатопаў ​4He (99,999862%) і ​3He. Належыць да інертных газаў. Адзін з найб. пашыраных элементаў космасу (2-і пасля вадароду). Адкрыты ў 1868 астраномамі Ж.Жансэнам і Н.Лок’ерам у спектры сонечнай кароны (назва ад грэч. helios — Сонца). У атмасферы 5,27·10​-4% па аб’ёме (​4He утвараецца пры α-распадзе радыенуклідаў торыю, урану і інш. элементаў). Ядры ​4He — альфа-часціцы. Гелій маюць некат. прыродныя газы (да 2% па аб’ёме) і мінералы. Вылучаны ў 1895 У.Рамзаем з мінералу клевеіту.

Аднаатамны газ без колеру і паху, tкіп -268,39 °C (самая нізкая сярод вадкасцей), шчыльн. 0,17847 кг/м³ (0 °C). Адзіны элемент, які не цвярдзее пры нармальным ціску нават пры т-ры, блізкай да 0 К, tпл -271,25 °C (ціск 3,76 МПа). Горш за інш. газы раствараецца ў вадзе, характарызуецца выключнай хім. інертнасцю. У прам-сці атрымліваюць з газаў прыродных гаручых метадам глыбокага ахаладжэння. Выкарыстоўваюць пры зварцы, рэзцы металаў, перапампоўванні ракетнага паліва, у вытв-сці цеплавыдзяляльных элементаў, паўправадніковых матэрыялаў (у якасці ахоўнага асяроддзя), у аэранаўтыцы, для кансервацыі харч. прадуктаў і інш. Гелій вадкі — квантавая вадкасць. Пры т-ры 2,17 К (-270,98 °C) і ціску пары 0,005 МПа (т.зв. λ-пункт) у вадкім ​4He (бозэ-вадкасць) адбываецца фазавы пераход другога роду (ад He I да He II). He I бурна кіпіць ва ўсім аб’ёме, He II — спакойная вадкасць, якой уласціва звышцякучасць. Выкарыстоўваюць у крыягеннай тэхніцы як холадагент, вадкі ​3He — адзінае рэчыва для вымярэння т-ры ніжэй за 1 К.

В.Р.Собаль.

т. 5, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ХІ́МІЯ,

навука аб прынцыпах і метадах вывучэння саставу рэчываў. Уключае тэарэт. асновы хім. аналізу, метады вызначэння кампанентаў у рэчывах ці матэрыялах, сістэм. аналіз канкрэтных аб’ектаў. Тэарэт. асновы аналітычнай хіміі — метралогія хім. Аналізу (апрацоўка вынікаў); вучэнне аб адборы і падрыхтоўцы аналітычных проб, складанні схемы і выбары метадаў, прынцыпах і шляхах аўтаматызацыі аналізу. Аналітычная хімія звязана з дасягненнямі фізікі, матэматыкі, біялогіі, розных галін тэхнікі. Асаблівасць аналітычнай хіміі — вывучэнне індывід. спецыфічных уласцівасцяў і характарыстык аб’ектаў. У залежнасці ад мэты аналізу адрозніваюць якасны аналіз і колькасны аналіз; у залежнасці ад кампанентаў, якія неабходна выявіць — ізатопны аналіз, элементны аналіз, структурна-групавы (у т. л. функцыянальны аналіз), малекулярны і фазавы аналіз; у залежнасці ад прыроды рэчыва — аналіз арган. і неарган. рэчываў. Вызначэнне рэчыва ці кампанента праводзяць хімічнымі (гравіметрычны аналіз, цітрыметрычны аналіз), фізіка-хімічнымі (электрахім., фотаметрычны аналіз, кінетычныя метады аналізу), фізічнымі (спектральныя, ядзерна-фіз. і інш.) і біял. метадамі аналізу. Практычна ўсе метады аналітычнай хіміі заснаваны на залежнасці ўласцівасцяў аб’ектаў, якія можна мераць (маса, аб’ём, святлопаглынанне, эл. ток і інш.), ад іх саставу.

Заснавальнікам аналітычнай хіміі як навукі лічыцца Р.Бойль, які ўвёў паняцце «хімічны аналіз». Класічная аналітычная хімія (17—18 ст.) выкарыстоўвала пераважна гравіметрычны і цітрыметрычны метады аналізу. Да 1-й пал. 19 ст. адкрыты многія хім. элементы, выдзелены састаўныя часткі некаторых прыродных рэчываў, устаноўлены пастаянства саставу закон, кратных адносін закон, масы захавання закон. Распрацаваны сістэматычны аналіз (ням. хімікі Г.Розе, К.Фрэзеніус і рус. хімік М.А.Мяншуткін), створаны цітрыметрычны аналіз арган. злучэнняў (ням. хімік Ю.Лібіх). У канцы 19 ст. складалася тэорыя аналітычнай хіміі, заснаваная на вучэнні аб хім. раўнавазе ў растворах з удзелам іонаў (у асн. В.Оствальд). У 20 ст. з’явіліся метады мікрааналізу арган. злучэнняў (аўстр. хімік Ф.Прэгль), паляраграфіі (чэшскі хімік Я.Гейраўскі), рус. біяхімікам М.С.Цветам адкрыты метад храматаграфіі (1903) і створаны яго варыянты. Развіццё сучаснай аналітычнай хіміі звязана са з’яўленнем мноства фізіка-хім. і фіз. метадаў аналізу (мас-спектраметрычны, рэнтгенаўскі, ядзерна-фізічныя). Прапанаваны плазмавыя крыніцы току для атамна-эмісійнага аналізу, распрацаваны метады фотаметрычнага аналізу, атамна-адсарбцыйнай спектраскапіі. У сувязі з неабходнасцю аналізу ядз., паўправадніковых і інш. матэрыялаў высокай чысціні створаны радыеактывацыйны аналіз, хіміка-спектральны, іскравая мас-спектраметрыя, вольтамперметрыя — метады, што дазваляюць вызначыць дамешкі ў чыстых рэчывах з канцэнтрацыяй да 10​-7—10​-8%. Распрацаваны метады неперарыўнага і дыстанцыйнага аналізу. Перавага аддаецца метадам неразбуральнага кантролю, лакальнага аналізу (рэнтгенаспектральны мікрааналіз, мас-спектраметрыя другасных іонаў і інш.). Лакальным аналізам карыстаюцца пры аналізе паверхневых слаёў цвёрдых матэрыялаў ці ўключэнняў горных парод.

Сучасная аналітычная хімія карыстаецца аўтам. ці аўтаматызаванымі варыянтамі вызначэння рэчываў. Метады аналітычнай хіміі дазваляюць кантраляваць тэхнал. працэсы і якасць прадукцыі ў многіх галінах вытв-сці, праводзіць пошук і разведку карысных выкапняў. Аналітычная хімія садзейнічала развіццю ат. энергетыкі, электронікі, акіяналогіі, біялогіі, медыцыны, крыміналістыкі, археалогіі, касм. даследаванняў. На Беларусі сістэм. даследаванні па аналітычнай хіміі пачаліся ў 1935 у БДУ і вядуцца ў ін-тах фіз., хім. і геал. профілю АН, у ВНУ і ведамасных н.-д. установах. Распрацаваны шэраг храматаграфічных метадаў, выдзялення з сумесяў і вызначэння іонаў, комплексаў металаў, алкалоідаў і інш. рэчываў (пад кіраўніцтвам Р.Л.Старобінца); хім. метадаў вызначэння металаў (В.Р.Скараход); даследаваны ўплыў экстракцыйных працэсаў розных тыпаў на функцыянаванне вадкасных і плёначных іонаселектыўных электродаў на аснове вышэйшых чацвярцічных амоніевых соляў (Я.М.Рахманько) і сульфакіслот (У.У.Ягораў). Распрацаваны і ўкаранёны: аніён- і катыёнселектыўныя электроды; нітратамер і іонамер; методыкі вызначэння нітратаў, свінцу, кадмію, вісмуту, ртуці, цынку, алкалоідаў, алкілсульфатаў і інш., газахраматаграфічнага вызначэння фенолаў, пестыцыдаў у вадзе, прадуктах харчавання; экстракцыйна-спектральныя і храматаграфічныя метады аналізу с.-г. аб’ектаў; метады аналізу паўправадніковых матэрыялаў, сплаваў, плёнак, ферытаў.

Літ.:

Золотов Ю.А. Аналитическая химия: Проблемы и достижения. М., 1992.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАТЭРМІ́Я,

геатэрміка (ад геа... + грэч. thermē цяпло), раздзел геафізікі, які вывучае цеплавы стан нетраў і цеплавую гісторыю Зямлі. Даследуе цеплавое поле Зямлі, размеркаванне т-р і крыніц цеплавой энергіі нетраў, шчыльнасць цеплавой плыні з глыбінь ла паверхні, змяненні цеплавога стану Зямлі з моманту яе ўзнікнення да сучаснасці.

Т-ра рэчыва Зямлі павышаецца з глыбінёй і залежыць ад цеплавой плыні, што паступае з верхняй мантыі ў падэшву зямной кары і пры распадзе доўгажывучых радыеактыўных элементаў (пераважна ізатопаў урану, торыю, калію). Найб. вывучанае цеплавое поле верхняй ч. зямной кары, дзе магчымы непасрэдныя вымярэнні т-ры ў свідравінах (да глыб. 6—10 км). Аб т-ры больш глыбокіх нетраў мяркуюць паводле ўскосных звестак — т-ры вулканічных лаў і некат. геафіз. паказчыках. Цеплавое поле Зямлі характарызуецца шчыльнасцю цеплавой плыні, якая вызначаецца паводле велічыні геатэрмічнага градыента і каэфіцыента цеплаправоднасці горных парод. Геатэрмія цесна звязана з тэктонікай, геадынамікай і тэрмадынамікай, абапіраецца на даныя планеталогіі. Геатэрмічныя даследаванні выкарыстоўваюцца пры вывучэнні геал. будовы і геадынамічнай актыўнасці рэгіёнаў Зямлі, пры пошуках і эксплуатацыі радовішчаў нафты, газу і інш. карысных выкапняў.

Геатэрмія як галіна геафізікі адасобілася ў сярэдзіне 20 ст. Першыя вымярэнні шчыльнасці цеплавой плыні ў Еўропе зрабіў Э.Булард (Вялікабрытанія), на тэр. СНД — А.А.Любімава.

На Беларусі адзінкавыя замеры т-ры ў свідравінах рабілі з 1928. У 1965 Х.В.Багамолаў арганізаваў высокадакладныя вымярэнні т-ры ў свідравінах і вывучэнне цеплавых уласцівасцей горных парод і цеплавой плыні на ўсёй тэр. краіны, якія прадаўжаюцца ў Ін-це геал. навук Нац. АН Беларусі (П.П.Атрошчанка, Л.А.Цыбуля і інш.).

Літ.:

Богомолов Г.В., Цыбуля Л.А., Атрощенко П.П. Геотермическая зональность территории БССР. Мн., 1972;

Geothermal Atlas of Europe. Gotha, 1991/92.

У.І.Зуй.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)