амерыканскі фізік-эксперыментатар. Чл.Нац.АН ЗША (1965). Скончыў Калумбійскі ун-т (1948), дзе працаваў у 1951—79 (з 1958 праф.). З 1978 у Нац. паскаральнікавай лабараторыі, з 1989 у Чыкагскім ун-це, з 1992 у Ілінойскім тэхнал. ін-це. Навук. працы па фізіцы высокіх энергій і элементарных часціц. Разам з інш. адкрыў доўгажывучы нейтральны каон (1956), мюоннае нейтрына (1962), эпсілон-часціцу і зачараваны (ніжні) кварк (1977). Пад яго кіраўніцтвам сінтэзавана ядро антырэчыва — антыдэйтрон (1965). Нобелеўская прэмія 1988 (разам з М.Шварцам і Дж.Штэйнбергерам).
Тв.:
Рус.пер. — Наблюдения в физике частиц: от двух нейтрино к Стандартной модели // Успехи физ. наук. 1990. Т. 160, вып. 2.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕРЗАРА́Д,
характарыстыка элементарных часціц, роўная падвоенаму сярэдняму эл. зараду часціцы ў ізатапічным мультыплеце (гл.Ізатапічная інварыянтнасць). Адрозніваюць моцны і слабы гіперзарад.
Моцны гіперзарад вызначаецца алг. сумай усіх унутраных квантавых лікаў часціцы і выкарыстоўваецца для апісання прыблізнай ізатапічнай інварыянтнасці адронаў. У розных рэакцыях элементарных часціц моцны гіперзарад амаль што захоўваецца, парушэнні яго захавання звязаны з уплывам электрамагнітнага ўзаемадзеяння. Слабы гіперзарад вызначае інтэнсіўнасць электраслабага ўзаемадзеяння элементарных ферміёнаў з нейтральным прамежкавым базонам і з’яўляецца крыніцай поля гэтага базона. Значэнні слабага гіперзараду, атрыманыя эксперыментальна, пакуль што не паддаюцца тлумачэнню. Напр., левыя нейтрына і электрон маюць слабы гіперзарад, роўны -1/2, правы электрон -1, левыя u- і d-кваркі + 1/6, правыя u- і (d-кваркі -2/3 і -1/3 адпаведна (гл.Кваркі).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕРО́НЫ [ад гіпер... + (нукл) оны],
нестабільныя барыёны з масамі, большымі за масу нейтрона. Час існавання гіперонаў каля 10−10с. Характарызуюцца спец. квантавым лікам дзіўнасцю. Гіпероны (Λ° — гіпероны) адкрыты ў касм. прамянях (1947).
Вядомы некалькі тыпаў нейтральных і зараджаных гіперонаў: лямбда (Λ°), сігма (Σ+, Σ°, Σ−), ксі (Ξ, Ξ°) і амега (Ω), дзе верхнія знакі «+», «-» і «о» пры сімвалах гіперонаў пазначаюць знак эл. зараду, роўнага элементарнаму электрычнаму зараду. Для кожнага гіперона існуе адпаведная антычасціца. Гіпероны нараджаюцца ў моцных узаемадзеяннях, распадаюцца ў выніку слабых узаемадзеянняў на нуклоны і лёгкія часціцы: пімезоны, электроны і нейтрына. Уласцівасці гіперонаў можна растлумачыць у межах кваркавай мадэлі, паводле якой гіпероны, як і інш. барыёны, складаюцца з 3 кваркаў, прычым у склад гіперонаў абавязкова ўваходзіць S-кварк — носьбіт дзіўнасці. Пры ўзаемадзеянні часціц высокіх энергій з атамнымі ядрамі могуць узнікаць гіпер’ядры. Гл. таксама Узаемадзеянні элементарных часціц.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ЗІМАЎ ((Asimov) Айзек) (2.1.1920, в. Пятровічы Шумяцкага р-на Смаленскай вобл. — 6.4.1992),
амерыканскі пісьменнік. Праф. біяхіміі Бостанскага ун-та (з 1979). У 1923 сям’я эмігрыравала ў ЗША. Вядомасць Азімаву прынеслі аповесці і зб-кі апавяданняў пра робатаў («Я, робат», 1950; «Робаты і імперыя», 1985; «Мары робата», 1986, і інш.), раманы серыі «Канец станаўлення» («Станаўленне», 1951; «Станаўленне ў небяспецы», 1982; «Станаўленне і Зямля», 1986, і інш.) пра галактычную гісторыю чалавецтва, раманы «Канец вечнасці» (1955) і «Самі багі» (1972) — перасцярога ад бяздумнага ўмяшання ў законы развіцця прыроды і чалавецтва, навук.-папулярныя кнігі («Жыццё і энергія», 1962; «Сціслая гісторыя біялогіі», 1965; «Нейтрына», 1966, і інш.). Яго творам уласцівыя займальнасць, дакладнае абгрунтаванне навук. дапушчэнняў, уменне спалучыць навук. і фантастычнае.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЮО́НЫ, мю-мезоны,
нестабільныя зараджаныя элементарныя часціцы, якія маюць спін ½, час жыцця 2,2·10−6 с і масу прыкладна ў 207 разоў большую за масу электрона; адносяцца да лептонаў. Адмоўна зараджаны (μ−) і дадатна зараджаны (μ+) М. з’яўляюцца антычасціцамі адзін аднаго.
Эксперыментальна выяўлены ў касм. праменях амер. фізікамі К.Андэрсанам і С.Недэрмаерам (1936—37). Асн. крыніцы М. — распад піонаў і каонаў (гл.Мезоны), якія інтэнсіўна нараджаюцца пры сутыкненнях адронаў, працэс нараджэння пар μ− μ+ фатонамі высокіх энергій, распады гіперонаў, «зачараваных» часціц і інш. Па сваіх уласцівасцях ва ўсіх вядомых узаемадзеяннях μ− паводзіць сябе аналагічна электрону, ад якога адрозніваецца толькі масай (μ — е-універсальнасць). Слабае ўзаемадзеянне М. выклікае іх распад на электрон (ці пазітрон) і адпаведнае нейтрына, што вызначае час жыцця М. у вакууме. У рэчыве павольныя М. страчваюць энергію на іанізацыю атамаў і могуць спыняцца. Пры гэтым μ− прыцягваецца ядром атама і ўтвараецца мезаатам, а μ+ далучае да сябе электрон і ўтвараецца мюоній.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БЭ́ТА-РАСПА́Д,
β-распад, самаадвольнае ператварэнне ўнутры атамнага ядра аднаго з нейтронаў у пратон (ці наадварот), а таксама свабоднага нейтрона ў пратон, абумоўленае слабым узаемадзеяннем. Адзін з асн. тыпаў радыеактыўнасці. Ператварэнне нейтрона ў пратон суправаджаецца выпусканнем электрона e− і электроннага антынейтрына ν̃e, а пратона ў нейтрон — выпусканнем пазітрона e+ і электроннага нейтрына νe (гл.Бэта-выпрамяненне).
Пры электронным бэта-распадзе (β−) утвараецца ядро з колькасцю пратонаў, большай на 1 за іх колькасць у зыходным ядры, напр.:
. Пры пазітронным бэта-распадзе (β+) колькасць пратонаў у ядры памяншаецца на 1:
. Да бэта-распаду адносяць таксама электронны захоп. Энергія, якая вылучаецца пры бэта-распадзе, размяркоўваецца пераважна паміж e− і ν̃e (ці e+ і νe). Перыяды паўраспадаў β-актыўных ядраў ад 10−2с да 1018 гадоў. Пры бэта-распадзе не захоўваецца прасторавая цотнасць, што выяўляецца ў асіметрыі прасторавых напрамкаў у руху электронаў, якія выпраменьваюцца ядрамі: у напрамку спіна ядраў вылятае менш электронаў, чым у адваротным. Асновы тэорыі бэта-распаду закладзены Э.Фермі (1934). Далейшае развіццё тэорыі бэта-распаду прывяло да стварэння адзінай тэорыі слабых і эл.-магн. узаемадзеянняў (гл.Электраслабае ўзаемадзеянне).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСТРАФІ́ЗІКА,
раздзел астраноміі, які вывучае фізічную будову, хімічны састаў і развіццё нябесных целаў. Узнікла ў сярэдзіне 19 ст. ў выніку выкарыстання ў астраноміі спектральнага аналізу, фатаграфіі і фотаметрыі, што дало магчымасць вызначаць т-ру атмасфер Сонца і зорак, іх магнітныя палі, скорасць руху ўздоўж праменя зроку, характар вярчэння зорак і інш.Асн. раздзелы астрафізікі: фізіка Сонца, фізіка зорных атмасфер і газавых туманнасцяў, тэорыя ўнутранай будовы і эвалюцыі зорак, фізіка планет і інш. Тэарэтычная астрафізіка вывучае асобныя нябесныя аб’екты (планеты, зоркі, пульсары, квазары, галактыкі, скопішчы галактык і інш.) і агульныя фіз. прынцыпы астрафіз. працэсаў з мэтай устанаўлення агульных законаў развіцця матэрыі ў Сусвеце. Практычная астрафізіка распрацоўвае інструменты, прылады і метады даследаванняў. Крыніцы атрымання інфармацыі пра нябесныя целы: эл.-магн. выпрамяненне (гама-, рэнтгенаўскае, ультрафіялетавае, бачнае, інфрачырвонае і радыёвыпрамяненне); касм. прамяні, якія дасягаюць атмасферы Зямлі і ўзаемадзейнічаюць з ёю; нейтрына і антынейтрына; гравітацыйныя хвалі, што ўзнікаюць пры выбухах масіўных зорак. Значны ўклад у развіццё Астрафізікі зрабілі А.А.Белапольскі, М.М.Гусеў, Ф.А.Брадзіхін, В.Я.Струвэ, Г.А.Ціхаў (Расія), Г.Фогель, К.Шварцшыльд (Германія), У.Кэмпбел, Э.Пікерынг, Э.Хабл (ЗША), А.Эдынгтан (Англія), В.А.Амбарцумян (СССР) і інш.Найб. значныя дасягненні сучаснай Астрафізікі — адкрыццё нябесных аб’ектаў з незвычайнымі фіз. ўласцівасцямі (нейтронныя зоркі, чорныя дзіркі, квазары).
Літ.:
Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;
Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.