ВІТАМІ́ННЫЯ КАРМЫ́,

раслінныя і жывёльныя кармы з павышанай колькасцю вітамінаў або правітамінаў. Асабліва багатая вітамінамі маладая зялёная трава. Асн. кармавыя крыніцы вітамінаў: вітаміну A — малодзіва, малако, маслёнка, сыроватка, тварог; вітаміну D — сена сонечнай сушкі, сянаж, сілас, закладзеныя ў сонечнае надвор’е, малодзіва, малако, мука рыбная; вітаміну E — зялёныя і травяністыя кармы, прарослае зерне, вотруб’е пшанічнае; вітаміну K — лісце зялёных раслін, травяністыя кармы, бацвінне караняплодаў, водарасці; вітамінаў групы B — зялёныя расліны, добрае сена, зерневыя кармы, вотруб’е, кармавыя дрожджы, травяная мука бабовых, мука рыбная, макуха і шроты, малочныя кармы, зерне бабовых і злакаў, кармы жывёльнага паходжання; вітаміну C — маладыя зялёныя расліны, коранеклубняплоды. Багатая крыніца вітамінных кармоў — абагачаныя вітамінамі камбікармы, бялкова-вітамінна-мінеральныя дабаўкі і прэміксы.

т. 4, с. 200

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕГЕТАТЫ́ЎНАЕ РАЗМНАЖЭ́ННЕ,

утварэнне новага арганізма з часткі мацярынскага, адзін са спосабаў бясполага размнажэння. У жывёльных арганізмаў ажыццяўляецца пачкаваннем (губкі, кішачнаполасцевыя, некат. чэрві, імшанкі, абалоннікі) або дзяленнем (прасцейшыя, плоскія і кольчатыя чэрві), у ніжэйшых раслін (напр., у водарасцей) — часцей дзяленнем, радзей пачкаваннем (некат. сумчатыя грыбы, напр., дрожджы, некат. базідыяльныя грыбы), у ніжэйшых шматклетачных раслін — распаданнем цела на часткі, здольныя да рэгенерацыі. Вышэйшыя расліны могуць размнажацца карэнішчамі (шматгадовыя травы), чаранкамі (сцябловымі — агрэст, вярба, ружа, таполя; лісцевымі — бягонія, седум; каранёвымі — ажына, вішня, маліна, сліва), адводкамі (яблыня, груша, ягадныя культуры), цыбулінамі (цыбуля, часнок), клубнямі (бульба, тапінамбур) і інш. Вегетатыўнае размнажэнне мае шэраг пераваг перад палавым: лёгкасць размнажэння, хуткае развіццё і ранні пачатак плоданашэння, захаванне ў патомстве прыкмет і ўласцівасцей мацярынскай расліны. Выкарыстоўваецца ў пладаводстве, агародніцтве, лесаводстве.

т. 4, с. 54

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРО́ЛІЗНАЯ ПРАМЫСЛО́ВАСЦЬ,

адна з галін мікрабіялагічнай прамысловасці. Спецыялізуецца на перапрацоўцы нехарчовых раслінных матэрыялаў метадам гідролізу для атрымання этылавага спірту, кармавых дражджэй, глюкозы і ксіліту, фурфуролу, арган. кіслот, лігніну і інш. прадуктаў. Сыравінай служаць адходы лясной, дрэваапр. і цэлюлозна-папяровай прам-сці, перапрацоўкі с.-г. сыравіны (салома, сланечнікавае шалупінне, кукурузныя храпкі, сцёблы бавоўніку, мелес з цукр. буракоў і інш.). Пры гідролізе раслінных тканак вугляводы пераходзяць у раствор (пад уздзеяннем вады і цяпла ў прысутнасці каталізатараў), а лігнін застаецца. У гэтым працэсе нерастваральныя поліцукрыды ператвараюцца ў растваральныя монацукрыды (гексозы і пентозы), якія хім. і біяхім. шляхам перапрацоўваюцца ў крышт. манозы (глюкозы, ксілозы), этылавы спірт, гліцэрын, ксіліт, сарбіт і інш., у альдэгіды і іх вытворныя (фурфурол, фуран і інш.), арган. кіслоты (воцатную, лімонную, яблычную і інш.), бялкова-вітамінныя дрожджы і антыбіётыкі. З 1 т сухой сыравіны ў залежнасці ад тэхналогіі можна атрымаць да 150 кг фурфуролу, або 140 кг першасных спіртоў, або 300 кг крышт. глюкозы, або 250 кг кармавых дражджэй і каля 300 кг гідролізнага лігніну.

Гідролізная прамысловасць развіваецца з пач. 20 ст. У б. СССР з 1935 наладжана вытв-сць этылавага спірту, з 1940-х г. — кармавых дражджэй і фурфуролу. На Беларусі гідролізную прадукцыю вырабляюць з 1936 на Бабруйскім гідролізным заводзе, з 1963 на Рэчыцкім доследна-прамысловым гідролізным заводзе, шматлікіх спіртавых і крухмальных з-дах. Выпускаецца тэхн. рэктыфікаваны этылавы спірт і этылавы спірт-сырэц, кармавыя дрожджы, фурфурол, вуглякіслы газ. У 1994 выраблена (разам з прадпрыемствамі мікрабіял. прам-сці) 49 тыс. т таварнай прадукцыі кармавых дражджэй (найб. у 1990 — 508 тыс. т). Значную гідролізную прамысловасць, якая спецыялізуецца пераважна на вытв-сці фурфуролу і этылавага спірту, маюць ЗША (найб. вытворца фурфуролу), Францыя, Італія, Японія, Фінляндыя; развітая вытв-сць этылавага спірту, кармавых дражджэй і фурфуролу ў Расіі, Германіі і інш. краінах. Гідролізная прамысловасць — перспектыўная галіна біятэхналогіі, здольная вырашаць праблемы, звязаныя з вытв-сцю харч. прадуктаў, лекавых прэпаратаў, энергет. паліва і сыравіны для хім. і біяхім. Вытв-сці.

Т.П.Цэдрык.

т. 5, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРЫБЫ́

(Mycota),

група гетэратрофных бесхларафільных арганізмаў, разнастайных паводле будовы, памераў і спосабу жыцця; адно з царстваў жывой прыроды. Спалучаюць прыкметы раслін (нерухомасць, верхавінкавы тып росту, наяўнасць клетачных сценак і інш.) і жывёл (гетэратрофны тып абмену, наяўнасць хіціну, утварэнне мачавіны і глікагену і інш.). Маюць асобы цыкл развіцця (змена ядзерных фаз, дыкарыятычны стан, разнаякаснасць ядзер у межах адной клеткі — гетэракарыёз і інш.). Раней грыбы адносілі да ніжэйшых раслін. Вядома больш за 100 тыс. відаў грыбоў, пашыраных па ўсім зямным шары. Падзяляюцца на 3 аддзелы: ааміцэты, слізевікі і сапраўдныя грыбы. Сярод апошніх вылучаюць аскаміцэты, базідыяльныя грыбы, зігаміцэты, недасканалыя грыбы, хітрыдыяміцэты.

Вегетатыўнае цела большасці грыбоў уяўляе сабой міцэлій (грыбніцу), які складаецца з адна- ці шматклетачных разгалінаваных тонкіх ніцей — гіфаў, што ў працэсе развіцця ўтвараюць строму або пладовыя целы рознай марфалогіі. Арганізмы ніжэйшых грыбоў (слізевікі, хітрыдыяміцэты) прадстаўлены голымі плазмодыямі. У жыццёвым цыкле грыбоў магчымы розныя стадыі развіцця (плеямарфізм). Аднаклетачны стан назіраецца ў перыяд размнажэння грыбоў (напр., у спор). Грыбы размнажаюцца вегетатыўным, бясполым і палавым спосабамі. У аснову вызначэння сістэматычнага стану грыбоў пакладзены асаблівасці будовы грыбнога цела, палавога і бясполага споранашэння і формы пладовых цел. Вегетатыўнае размнажэнне ажыццяўляецца кавалкамі міцэлію (шапкавыя грыбы), пачкаваннем (дрожджы), асобнымі клеткамі — аідыямі (галасумчатыя), гемамі і хламідаспорамі (галаўнёвыя грыбы), бясполае — з дапамогай спор, што ўтвараюцца на асобных клетках міцэлію. Споры могуць фарміравацца эндагенна, унутры шарападобна пукатых канцоў гіфаў (спарангіяспоры, зааспоры; у ніжэйшых грыбоў) або экзагенна (канідыяспоры; у вышэйшых і некат. ніжэйшых грыбоў). Для палавога размнажэння ўласціва зліццё аднолькавых або розных паводле памераў гамет (у ніжэйшых грыбоў), яйцаклеткі і сперматазоіда (у ааміцэтаў), вегетатыўных клетак з аднолькавымі або рознымі палавымі знакамі (у зігаміцэтаў), антэрыдыю і архікарпа з утварэннем сумкі (у аскаміцэтаў) або шляхам саматагаміі з утварэннем базідый (у базідыяміцэтаў). Утварэнню сумак і базідый звычайна папярэднічае развіццё на міцэліі пладовых цел — спец. спараносных органаў. У аскаміцэтаў гэта клейстатэцый, перытэцый, апатэцый і інш., у базідыяльных грыбоў распасцёртыя, палачка-, куста-, шара-, зоркападобныя і інш. пладовыя целы.

У прыродна-кліматычных зонах Беларусі трапляюцца прадстаўнікі ўсіх сістэматычных груп грыбоў, якія спецыялізаваны да розных экалагічных умоў існавання. Напр., агарыкальныя, афілафаральныя, гастэраміцэты і інш. сапрабіёнты развіваюцца ў лясах на гнілой драўніне, лясным подсціле, плесневыя грыбы — на прадуктах харчавання, кармах жывёл. Мучніста-расяныя грыбы, іржаўныя, перанаспоравыя, хітрыдыевыя, гельмінтаспорый, фузарый, фітафтора, макраспорый, склератынія і інш. групы фітапатагенных грыбоў паразітуюць на збожжавых, агароднінных, пладова-ягадных культурах. Вядома больш за 200 відаў ядомых грыбоў і каля 40 відаў ядавітых грыбоў. Грыбы мінералізуюць раслінныя рэшткі ў глебе, патагенныя грыбы выклікаюць хваробы раслін, жывёл і чалавека. Грыбы — актыўныя накапляльнікі радыенуклідаў. Многія віды плесневых грыбоў выкарыстоўваюць у мікрабіял. прам-сці для атрымання вітамінаў, антыбіётыкаў, ферментаў, стэроідных гармонаў, дрожджы — у хлебапячэнні, піваварэнні, вінаробстве. Шэраг відаў грыбоў культывуюць (шампіньёны, вешанкі, труфелі). Вывучае грыбы мікалогія.

Літ.:

Беккер З.Э. Физиология грибов и их практическое использование. М., 1963;

Эволюция и систематика грибов: Теорет. и прикладные аспекты. Л., 1984;

Сержанина Г.И., Змитрович И.И. Микромицеты: Иллюстрир. пособие для биологов. Мн., 1978.

В.В.Карпук.

т. 5, с. 471

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРО́ЛІЗ

(ад гідра... + ...ліз),

рэакцыя абменнага ўзаемадзеяння паміж рэчывам і вадой.

Пры гідродізе солей, утвораных слабай асновай і моцнай к-той (напр., хларыд амонію NH4Cl) ці — моцнай асновай і слабай к-той (напр., ацэтат натрыю CH3COONa), водныя растворы маюць кіслую (NH4+Cl​-+HOH=NH4OH+Cl​-+H​+) ці шчолачную (CH3COO​-+Na​++HOH=CH3COOH+Na​++OH​-) рэакцыю, што абумоўлена ўтварэннем слабых электралітаў. Гідроліз солей, утвораных моцнымі асновай і к-той, не ідзе. Гідролізам абумоўлена існаванне буферных раствораў, здольных падтрымліваць пастаянную кіслотнасць. Гідроліз мінералаў выклікае змяненні ў саставе зямной кары. Пры гідролізе арганічных злучэнняў пад уздзеяннем вады разрываюцца сувязі ў малекуле з утварэннем двух і больш злучэнняў. Гідроліз вугляродаў і бялкоў у жывым арганізме каталізуюць ферменты гідралазы. Гідроліз адыгрывае значную ролю ў працэсах засваення стравы і ўнутрыклетачнага абмену. З дапамогай гідролізу ў хім. прам-сці атрымліваюць спірты, карбонавыя к-ты з іх вытворных, мыла і гліцэрыны з тлушчаў. Гідроліз раслінных матэрыялаў — аснова гідролізных вытв-сцей. У працэсе тэрмакаталітычнага гідролізу з поліцукрыдаў (цэлюлоза і геміцэлюлозы), якія складаюць каля 70% расліннай біямасы, утвараюцца растваральныя ў вадзе монацукрыды і прадукты іх распаду, што пераходзяць у раствор — гідралізат. Гідралізат акрамя монацукрыдаў (2,5—3,5 %, пераважна пентозы і гексозы) мае фурфурол, оксіметафурфурол, воцатную і мурашыную к-ты, гумінавыя рэчывы і інш. Пасля гідролізу застаецца цвёрды астатак — гідролізны лігнін (30—35% ад масы сыравіны). Хім. і біяхім. перапрацоўкай (ферментацыяй) гідралізату атрымліваюць харч. глюкозу, тэхн. ксілозу, шмататамныя спірты (ксіліт, сарбіт), гліцэрыну, этыленгліколь, этылавы спірт, ацэтон, бялковыя кармавыя дрожджы, вітаміны і інш. З гідролізнага лігніну атрымліваюць адсарбенты, арганамінер. ўгнаенні, паліва і інш. прадукты тэхн. прызначэння. Гл. таксама Гідролізная прамысловасць.

Т.П.Цэдрык.

т. 5, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІТАМІ́НЫ

(ад лац. vita жыццё),

група нізкамалекулярных арган. злучэнняў рознай хім. прыроды, неабходных для нармальнай жыццядзейнасці арганізма. Выконваюць у арганізме найважнейшыя біяхім. і фізіял. функцыі абмену рэчываў; уваходзяць у састаў субклетачных структур і падтрымліваюць іх нармальную будову і функцыянаванне. Сінтэзуюцца пераважна раслінамі (гл. Вітамінаносныя расліны), грыбамі і бактэрыямі. Чалавек і жывёлы атрымліваюць вітаміны ў асн. з расліннай ежай або з прадуктамі жывёльнага паходжання. У жвачных жывёл вітаміны групы B утвараюцца мікрафлорай кішэчніка. Некаторыя вітаміны ўтвараюцца ў арганізмах чалавека і жывёл самастойна (напр., PP), але ў недастатковай колькасці, або з іх папярэднікаў — т.зв. правітамінаў. Праз сценкі страўнікава-кішачнага тракту чалавека і жывёл вітаміны паступаюць у кроў, разносяцца па ўсім арганізме і ўтвараюць шматлікія вытворныя (напр., эфірныя, амідныя, нуклеатыдныя), якія звычайна спалучаюцца са спецыфічнымі бялкамі і ўтвараюць многія ферменты (больш за 200). Многія праяўляюць сваё спецыфічнае біял. ўздзеянне пасля ператварэння ў метабалічна актыўныя формы або ўваходзяць у састаў каферментаў і адпаведных ферментаў. Нястача вітамінаў (гл. Вітамінная недастатковасць) прыгнечвае асобныя рэакцыі абмену рэчываў, аслабляе некаторыя фізіял. функцыі. Калі вітамінаў намнога больш, чым патрэбна арганізму, узнікаюць гіпервітамінозы, калі менш або яны адсутнічаюць — гіпа- і авітамінозы. Выкарыстанне арганізмам вітамінаў памяншаецца пры наяўнасці ў ежы і кармах антывітамінаў — антаганістаў, якія перашкаджаюць вітамінам праяўляць іх біял. актыўнасць. Тэрмін «вітаміны» прапанаваў польскі біяхімік К.Функ (1912).

Вядома больш за 20 розных вітамінаў, якія маюць назвы, што характарызуюць іх хім. састаў ці фізіял. дзейнасць, таксама літарныя і лічбава-літарныя абазначэнні (напр., рэцінол — A1, тыямін — B1, рыбафлавін — B2, пантатэнавая кіслата — B3, пірыдаксін — B6, цыянкабаламін — B12, аротавая кіслата — B13, пангамавая кіслата — B15, фоліевая кіслата — Bc, аскарбінавая кіслата — C, эргакальцыферол — D2, халекальцыферол — D3, такаферолы — E, філахінон — K1, фарнахінон — K2, вікасол — K3, біяцін — H, біяфлаваноіды — P, нікацінавая кіслата, або нікацінамід — PP, ліпоевая кіслата, мезаіназіт). Часам яны маюць групавыя назвы, а асобныя прадстаўнікі гэтых груп (напр., A1 і A2, D2 і D3 і г.д.) называюцца вітамерамі. Па растваральнай здольнасці вітаміны падзяляюцца на тлушча- і водарастваральныя. Да тлушчарастваральных належаць вітаміны групы A, D, E, K, Q, якія звычайна дэпануюцца ў тканках. Большасць водарастваральных вітамінаў у выглядзе фосфарных эфіраў выконваюць ролю каферментаў або ўваходзяць у састаў больш складаных каферментаў. Да гэтай групы належаць вітаміны групы B — B1, B2, B3, B5, B6, B12, H, PP, U; ліпоевая, фоліевая і аскарбінавая к-ты. Вельмі багатыя вітамінамі дрожджы, лісцевая агародніна, ягады.

Вітаміны атрымліваюць хім. і мікрабіял. сінтэзам, таксама з прыродных крыніц (гл. Вітамінная прамысловасць). Выкарыстоўваюць у медыцыне і ветэрынарыі для прафілактыкі і лячэння гіпа- і авітамінозаў, інш. хвароб, карэкцыі абменных працэсаў у арганізме (вітамінатэрапія), вітамінізацыі прадуктаў харчавання і кармоў (гл. Вітамінныя кармы) і інш. Вітаміны вывучае Вітаміналогія.

Літ.:

Березовский В.М. Химия витаминов. 2 изд. М., 1973;

Витамины. М., 1974;

Овчаров К.Е. Витамины растений. М., 1964;

Экспериментальная витаминология: (справ. руководство). Мн.. 1979.

В.К.Кухта.

т. 4, с. 200

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРАДЖЭ́ННЕ,

анаэробны ферментатыўны акісляльна-аднаўляльны працэс расшчаплення (катабалізму) арган. рэчываў, што адбываецца ў жывых арганізмах і эксперым. умовах пераважна пад уздзеяннем мікраарганізмаў або вылучаных з іх ферментаў. Зыходным субстратам для браджэння з’яўляюцца гал. ч. вугляводы, арган. к-ты, пурыны і пірымідзіны. Пры браджэнні ў выніку шэрагу спалучаных акісляльна-аднаўляльных рэакцый вызваляецца энергія, неабходная для жыццядзейнасці арганізмаў, і ўтвараюцца хім. злучэнні, што выкарыстоўваюцца імі для біясінтэзу амінакіслот, бялкоў, тлушчаў і інш. «будаўнічых» кампанентаў цела (некаторыя бактэрыі, мікраскапічныя грыбы і прасцейшыя жывуць толькі за кошт энергіі браджэння). Адначасова назапашваюцца канчатковыя прадукты браджэння: у залежнасці ад віду зброджвальнага субстрату і шляхоў яго метабалізму ўтвараюцца спірты (этанол і інш.), карбонавыя к-ты (малочная, алейная і інш.), ацэтон і інш. арган. злучэнні, вуглякіслы газ, у шэрагу выпадкаў — вадарод. Паводле ўтварэння асн. прадуктаў адрозніваюць браджэнне спіртавое, малочнакіслае, масленакіслае, прапіёнавакіслае, ацэтона-бутылавае, ацэтона-этылавае і інш. Характар і інтэнсіўнасць браджэння, колькасныя суадносіны канчатковых прадуктаў, а таксама кірунак залежаць ад асаблівасцяў яго ўзбуджальніка і ўмоў, пры якіх яно адбываецца (pH, ступень аэрацыі, від субстрату і інш.). Найб. вывучана спіртавое браджэнне.

Спіртавое браджэнне адкрыў франц. вучоны Каньяр дэ ла Тур (1836), які вызначыў, што яно звязана з ростам і размнажэннем дражджэй. Хім. ўраўненне спіртавога браджэння — C6H12O6·2C2H5OH + 2CO2 выведзена франц. хімікамі А.Лавуазье (1789) і Ж.Гей-Люсакам (1815). Л.Пастэр (1857) вызначыў, што спіртавое браджэнне выклікаюць толькі жывыя дрожджы ў анаэробных умовах. Ням. хімік Э.Бухнер (1897) высветліў, што яго могуць ажыццяўляць таксама выцяжкі з дражджэй. Пры т-ры, роўнай або большай за 50 °C, працэс браджэння спыняецца. Вылучаны і ідэнтыфікаваны 11 метабалітаў гэтага працэсу — прамежкавых прадуктаў спіртавога браджэння глюкозы і 11 ферментаў, што паслядоўна каталізуюць усе рэакцыі і спіртавога браджэння (сумарнае ўраўненне якога C6H12O6 + 2H3PO4 + 2АДФ → 2CH3CH2OH + 2CO2 + 2АТФ). Існуе цесная сувязь паміж браджэннем і дыханнем мікраарганізмаў, раслін і жывёл. У прысутнасці кіслароду спіртавое браджэнне прыгнечваецца ці зусім спыняецца. Працэс ператварэння глюкозы ў жывых арганізмах (гліколіз) падобны да спіртавога браджэння і ідзе з удзелам тых жа ферментаў (адметныя рысы ён набывае на апошніх этапах). Зброджванне вугляводаў (глюкозы, ферментатыўных гідралізатаў крухмалу, кіслотных гідралізатаў драўніны) шырока выкарыстоўваецца ў многіх галінах прам-сці з мэтай атрымання этылавага спірту, гліцэрыну і інш. тэхн. і харч. прадуктаў. На спіртавым браджэнні заснаваны прыгатаванне цеста ў хлеба-пякарнай прам-сці, малочнакіслых прадуктаў, вінаробства і піваварэнне. Малочнакіслае браджэнне бывае гомаферментатыўнае (яго асн. прадукт — малочная к-та; выклікаецца бактэрыямі Streptococcus lactis, S. diacetilactis, Lactobacillus delbrückii) і гетэраферментатыўнае (акрамя малочнай утвараюцца бурштынавая і воцатная к-ты, этанол і інш.; выклікаецца бактэрыяй Escherichia coli — кішачнай палачкай). Малочнакіслае браджэнне выкарыстоўваюць пры вырабе кісламалочных прадуктаў, малочнай к-ты, у хлебапячэнні, квашанні агародніны, сіласаванні кармоў і інш. Масленакіслае браджэнне вугляводаў з утварэннем масленай к-ты ажыццяўляюць многія анаэробныя бактэрыі з роду Clostrobium; выкарыстоўваецца для атрымання масленай к-ты, пры вымочванні валакністых раслін (лёну, канапель, джуту і інш.). Ацэтона-бутылавае браджэнне вугляродаў з утварэннем бутылавага спірту і ацэтону (таксама невял. колькасці вадароду, вуглякіслага газу, воцатнай і масленай к-т і этылавага спірту) выклікае бактэрыя Clostridium acetobutilicum; выкарыстоўваюцца для прамысл. атрымання бутылавага спірту і ацэтону, неабходных для хім. і лакафарбавай прам-сці. Некаторыя бактэрыі з роду Clostridium (гніласныя анаэробы) здольныя зброджваць таксама амінакіслоты бялкоў. Гэты працэс мае вял. значэнне ў кругавароце рэчываў у прыродзе. Прапіёнавакіслае браджэнне вугляводаў з утварэннем вуглякіслага газу, прапіёнавай і воцатнай к-т выклікаюць некалькі відаў бактэрый з роду Propionibacterium. На гэтым працэсе заснавана сыраробства. Ёсць віды браджэння, якія суправаджаюцца і аднаўленчымі працэсамі, напр. зброджванне цукру плесневым грыбам Aspergillus niger, які да 90% засвоенага ім цукру ператварае ў лімонную к-ту, што выкарыстоўваецца ў харч. прам-сці для мікрабіял. сінтэзу лімоннай к-ты. Традыцыйна браджэнне называюць таксама кіслародныя акісляльныя працэсы, напр. воцатнакіслае і глюконавакіслае браджэнне, што ажыццяўляюць аэробныя бактэрыі з роду Acetobacter і некаторыя плесневыя грыбы, якія акісляюць этылавы спірт з утварэннем воцатнай, а глюкозу — глюконавай к-т.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 2. М., 1985;

Кретович В.Л. Биохимия растений. 2 изд. М., 1986.

А.М.Ведзянееў.

т. 3, с. 228

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)