Вылічэнне выказванняў 1/235; 3/187, 193—194; 4/588; 5/71, 130; 6/239; 7/83, 211, 280; 10/108, 361, 541
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
Канечных рознасцей вылічэнне 5/379—380; 6/369
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
Неазначальны інтэграл, гл. Інтэгральнае вылічэнне
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
Лагічныя вылічэнні 6/238—2397/83, 280; 8/88; 9/151; 10/541’, 542, гл. Вылічэнне выказванняў, Вылічэнне класаў, Вылічэнне прэдыкатаў
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
ЗВАРО́ТНАЯ ПАСЛЯДО́ЎНАСЦЬ, рэкурэнтная паслядоўнасць,
паслядоўнасць, кожны член якой, пачынаючы з некаторага нумара, вызначаецца праз пэўную колькасць папярэдніх членаў. Напр., арыфметычная прагрэсія, геаметрычная прагрэсія. Выкарыстоўваецца пры рашэнні многіх практычных задач (гл. Набліжанае вылічэнне).
т. 7, с. 37
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНО́СІН ТЭО́РЫЯ,
раздзел фармальнай логікі, дзе разглядаюцца агульныя ўласцівасці адносін і законы, якім яны падпарадкоўваюцца. Распрацавана А. дэ Морганам, Ч.С.Пірсам і Э.Шрэдэрам. Асн. кірунак — вылічэнне адносін, блізкае да тэорыі класаў; даследаванне сувязі паміж адносінамі і аперацыі над імі, устанаўленне законаў, пры дапамозе якіх з адных адносін можна вывесці другія. У матэм. логіцы адносін тэорыя звязана з вывучэннем уласцівасцяў і вылічэннем прэдыкатаў, адносін тоеснасці, роўнасці, прыналежнасці элемента да пэўнага класа аб’ектаў і інш.
т. 1, с. 124
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́РТАСНЫЯ ЛІ́ЧБЫ ў матэматыцы,
усе лічбы набліжанага ліку ад першай злева, адметнай ад нуля, да апошняй, за сапраўднасць якіх можна ручацца. Напр., калі ўзважванне праведзена з дакладнасцю да 1 г, то ў запісе вынікаў 0,320 вартасныя лічбы будуць 3, 2 і 0. Вартасная лічба наз. праўдзівай, калі абсалютная хібнасць набліжанага ліку не перавышае палавіны адзінкі разраду гэтай лічбы. Напр., у запісе скорасці святла с = (299 796 ± 4) км/с праўдзівыя вартасныя лічбы 2, 9, 9, 7 і 9. Гл. таксама Набліжанае вылічэнне.
т. 4, с. 13
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГРА́ДУСНЫЯ ВЫМЯРЭ́ННІ,
сукупнасць астранамічных геадэзічных і гравіметрычных вымярэнняў на зямной паверхні для вызначэння параметраў фігуры Зямлі і вырашэння навук. задач. Іх сутнасць — вылічэнне радыуса Зямлі заключаецца ў прамым ці ўскосным вызначэнні адлегласці SAB і адначасовым вымярэнні вуглоў Z1 і Z2 на вельмі аддаленую зорку, для якой AN||BN. Пры гэтым ΔY=Y2-Y1 = Z2-Z1 і R = S:ΔY, дзе ΔY — у радыянах. З прычыны сплюшчанасці Зямлі велічыні S, што адпавядаюць аднолькавым ΔY, змяншаюцца ў напрамку ад экватара да полюсаў. На гэтым засн. вылічэнне змяненняў R ад a да b. Градусныя вымярэнні зроблены александрыйскім вучоным Эратасфенам у 3 ст. да н.э. паміж Александрыяй і Сіенай (Асуан). Адлегласць ён вылічыў па звестках пра рух караванаў, розніцу даўгот (7°22″) па памерах сонечнага ценю шаста. Паводле разлікаў R = 6844 км (цяпер 6371,11 км). Градусныя вымярэнні выконваліся з выкарыстаннем метаду трыянгуляцыі і паліганаметрыі пры ўскосным вымярэнні SAB. У Расіі градусныя вымярэнні выкананы ў 1816—52 пад кіраўніцтвам В.Я.Струвэ і К.І.Тэнера па т.зв. дузе Струвэ ад Фугленеса (Ледавіты ак.) да Стара-Някрасаўскі (вусце Дуная); яна прайшла праз зах. раёны Беларусі. У шыротным напрамку (дуга 52-й паралелі: Зах. Еўропа — Усх. Прусія — Варшава — Арол — Ліпецк — Саратаў — Арэнбург — Орск). Градусныя вымярэнні ў Беларусі прайшлі праз Гродна і Бабруйск. Па сукупнасці градусныя вымярэнні розных краін у 1940 у СССР завершаны разлікі, паводле якіх а = 6378245 м, b = 6356863 м, прынятыя і на Беларусі.
А.А.Саламонаў.
т. 5, с. 387
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ДРАСНАЯ МО́ВА ў вылічальнай тэхніцы,
фармальная мова для апісання працэсаў пераўтварэння інфармацыі ў ЭВМ. Кожны элемент інфармацыі адпавядае пэўнаму адрасу (напр., нумару ячэйкі памяці ЭВМ); некаторыя адрасы могуць адпавядаць інш. адрасам. Напр., калі элемент інфармацыі (адрас) b адназначна адпавядае адрасу a, то ў адраснай мове гэта запісваецца формулай (адрасная функцыя). Вылічэнне новых значэнняў і іх засылка на пэўныя адрасы задаюцца адраснай формулай (2 адрасныя функцыі, злучаныя знакам засылкі =>). Запіс b => a азначае, што элемент b засылаецца на адрас a, пасля чаго . Адрасны алгарытм (паслядоўнасць адрасных формул і інш. сімвалаў) спец. праграмамі-транслятарамі пераўтвараецца ў праграму на мове ЭВМ.
т. 1, с. 136
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГРАФІ́ЧНЫЯ ВЫЛІЧЭ́ННІ,
метады атрымання лікавых рашэнняў задач з дапамогай графічных пабудаванняў. Заснаваны на выкарыстанні графікаў функцый і паўтарэнні (або замене) з пэўным набліжэннем адпаведных аналітычных аперацый (складання, аднімання, множання, дзялення, дыферэнцыравання, інтэгравання і інш.). Выкарыстоўваюцца для атрымання першых набліжэнняў, якія ўдакладняюцца інш. метадамі, а таксама ў інж. практыцы, калі не патрабуецца высокая дакладнасць.
Лікі пры графічных вылічэннях алг. выразаў адлюстроўваюцца ў выбраным маштабе накіраванымі адрэзкамі. Пры графічным складанні і адніманні лікаў адпаведныя адрэзкі адкладваюць на прамой у пэўным (аднімаемае — у процілеглым) напрамку адзін за адным так, каб пачатак наступнага адрэзка супадаў з канцом папярэдняга. Сума (рознасць) — адрэзак, пачатак якога супадае з пачаткам 1-га, а канец — з канцом апошняга. Множанне і дзяленне ажыццяўляюцца будаваннем прапарцыянальных адрэзкаў, што адсякаюць на старанах вугла паралельныя прамыя, і выкарыстаннем адпаведных дачыненняў. Для графічнага ўзвядзення ў цэлую дадатную (адмоўную) ступень паслядоўна паўтараюць множанне (дзяленне). Для графічнага рашэння ўраўнення = 0 будуюць графік функцыі у = і знаходзяць яго пункты перасячэння з воссю абсцыс [пры рашэнні ўраўненняў 𝑓1(x) = 𝑓2(x) знаходзяць абсцысы пунктаў перасячэння крывых y1 = 𝑓1(x) і y2 = 𝑓2(x)]. Графічнае вылічэнне вызначанага інтэграла заснавана на замене графіка падінтэгральнай функцыі ступеньчатай ломанай, плошча пад якой лікава роўная дадзенаму інтэгралу. Для графічнага дыферэнцыравання будуецца графік вытворнай па значэннях тангенса вугла нахілу датычнай у розных пунктах графіка дадзенай функцыі. Графічнае рашэнне дыферэнцыяльнага ўраўнення dy/dx = 𝑓(x,y) зводзіцца да будавання поля напрамкаў на плоскасці: у некаторых пунктах малююць напрамкі датычнай dy/dx да інтэгральнай крывой, што праходзіць праз іх. Шуканую крывую праводзяць так, каб датычныя да яе мелі зададзеныя напрамкі. Часта папярэдне будуюць сям’ю ліній 𝑓(x,y) = C (ізаклінаў) для розных значэнняў C. У кожным пункце такой лініі вытворная пастаянная і роўная C. Гл. таксама Лікавыя метады, Набліжанае вылічэнне, Набліжанае інтэграванне.
С.У.Абламейка.
т. 5, с. 415
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)