ЛА́ЗЕР НА СВАБО́ДНЫХ ЭЛЕКТРО́НАХ

(ЛСЭ),

генератар эл.-магн. ваганняў, што выпрамяняюцца электронамі, якія вагаюцца пад уздзеяннем эл. або магн. поля і рухаюцца з рэлятывісцкімі скарасцямі ў напрамку распаўсюджвання хвалі. Прынцып работы ЛСЭ прапанавалі ў канцы 1940 — пач. 1950-х г. В.Л.Гінзбург і амер. фізік Г.Моц; такі лазер у інфрачырвоным дыяпазоне створаны ў 1976—77 у ЗША.

Пучок рэлятывісцкіх электронаў ствараецца з дапамогай паскаральнікаў зараджаных часціц і накіроўваецца ў прасторава-перыядычнае статычнае ал. ці магн., поле або магутнае поле нізкачастотнай хвалі; таксама ЛСЭ могуць быць заснаваны на розных варыянтах Чаранкова—Вавілава выпрамянення. З-за Доплера эфекту частата выпрамянення ў шмат разоў перавышае частату ваганняў электронаў. Пры зменах кінетычнай энергіі электронаў адбываюцца адпаведныя змены частаты выпрамянення ў дыяпазонах ад ЗВЧ да ультрафіялетавага.

А.А.Кураеў.

т. 9, с. 100

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯГЕАЦЭНО́З

(ад бія... + геа... + цэноз),

узаемаабумоўлены комплекс жывых і нежывых кампанентаў, звязаных паміж сабой абменам рэчываў і абменам энергіі; адна з найб. складаных прыродных сістэм. Паняцце біягеацэнозу прапанаваў сав. вучоны У.М.Сукачоў (1940). Жывыя кампаненты біягеацэнозу — аўтатрофы (фотасінтэзавальныя зялёныя расліны, хемасінтэзавальныя мікраарганізмы) і гетэратрофы (жывёлы, грыбы, многія бактэрыі, вірусы), нежывыя — прыземны слой атмасферы з газавымі і цеплавымі рэсурсамі, сонечная энергія, глеба з водамінер. рэсурсамі і часткова кара выветрывання (у водным біягеацэнозе — вада). Сукупнасць усіх жывых арганізмаў біягеацэнозу (біяцэноз) уключае прадуцэнтаў (пераважна зялёныя расліны), што ўтвараюць арган. рэчывы, кансументаў (жывёлы) і рэдуцэнтаў (мікраарганізмы), якія жывуць за кошт гатовых арган. рэчываў і ажыццяўляюць іх раскладанне да простых мінер. кампанентаў, зноў спажываных раслінамі. Біягеацэноз — элементарная адзінка біясферы зямнога шара. Межы біягеацэнозу — канкрэтныя раслінныя згуртаванні. Блізкі да біягеацэнозу тэрмін фацыя.

Літ.:

Основы лесной биогеоценологии. М., 1964.

т. 3, с. 167

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫЯ ПРЫЛА́ДЫ,

прылады, якія працуюць на цеплавой энергіі, што вылучаецца пры спальванні гаручага газу. Выкарыстоўваюцца ў жылых і грамадскіх будынках для прыгатавання страў, награвання вады, ацяплення памяшканняў і інш.

Складаюцца звычайна з гарэлкі газавай з падвадным цеплаправодам, цеплаабменніка, сродкаў аўтаматызацыі і прыстасавання для выдалення прадуктаў згарання. Падзяляюцца на бытавыя (газавыя кухонныя пліты, праточныя і ёмістасныя воданагравальнікі), ацяпляльныя (ёмістасныя воданагравальнікі, газавыя каміны, ацяпляльныя апараты з вадзяным контурам і ацяпляльна-варачныя, ацяпляльнікі канвекцыйнага і выпраменьвальнага абагрэву; гл. Газавае ацяпленне), газавыя прылады прадпрыемстваў грамадскага харчавання (рэстаранныя пліты, страваварачныя катлы, духавыя шафы, прыстасаванні для смажання, кіпяцільнікі), прылады для спец. мэт (гарэлкі лабараторныя і інфрачырвонага выпрамянення). Характарызуюцца цеплавой нагрузкай, прадукцыйнасцю (колькасцю цеплаты, якая выкарыстоўваецца), ккдз (звычайна 56—83%). Вырабам газавых прылад на Беларусі займаецца брэсцкі з-д «Газаапарат».

В.В.Арціховіч, В.М.Капко.

т. 4, с. 427

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЗІМЕ́ТРЫЯ

(ад доза + ...метрыя),

раздзел прыкладной ядз. фізікі, які займаецца вымярэннем і вывучэннем іанізавальных выпрамяненняў і эфектаў узаемадзеяння іх з рэчывам. На аснове рэгістрацыі выпрамянення метадамі Д. атрымліваюць таксама інфармацыю аб крыніцах выпрамянення, іх ізатопным складзе і размеркаванні ў прасторы, апрамененым целе. Тэхн. сродкамі Д. з’яўляюцца дазіметрычныя прылады (дазіметры).

Пачала развівацца ў сувязі з неабходнасцю стварэння радыяцыйнай бяспекі чалавека, потым набыла важнае значэнне ў фіз., хім. і радыебіял. даследаваннях, радыяцыйнай тэхналогіі, ахове навакольнага асяроддзя. Раздзел Д., звязаны з вызначэннем эквівалентнай дозы выпрамянення, наз. эквідазіметрыяй; метады вымярэння актыўнасці радыеактыўных крыніц складаюць аснову радыеметрыі; даследаванні біял. ўздзеяння іанізавальных выпрамяненняў на клетачным і малекулярным узроўнях выклікалі ў 1960-я г. інтэнсіўнае развіццё мікрадазіметрыі, якая займаецца пытаннямі мікраскапічнага размеркавання энергіі пры ўзаемадзеянні выпрамянення з рэчывам. Гл. таксама Дозы выпрамянення.

А.В.Берастаў.

т. 6, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЯЛЕ́ННЕ Я́ДРАЎ,

працэс, пры якім ядро атамнае дзеліцца на 2 і больш частак (асколкаў) з блізкімі масамі; суправаджаецца вылучэннем γ-квантаў і нейтронаў. Можа адбывацца самаадвольна (спантанна) або пры ўзаемадзеянні ядра з часціцамі і γ-квантамі. Пры Дз.я. урану, плутонію і інш. ствараюцца ўмовы для развіцця ланцуговай ядзернай рэакцыі, якая выкарыстоўваецца ў ядз. энергетыцы.

Пачатковая стадыя Дз.я. — павольная змена формы ядра, пры якой утвараецца шыйка, што злучае 2 яшчэ не сфарміраваныя асколкі (час праходжання гэтай стадыі залежыць ад энергіі ўзбуджэння ядра); паступова шыйка патанчаецца і ў некаторы момант часу адбываецца яе разрыў і асколкі разлятаюцца ў процілеглыя бакі. У 1938 ням. вучоныя О.Ган і Ф.Штрасман устанавілі, што пры бамбардзіроўцы урану нейтронамі ўтвараюцца ядры шчолачназямельных элементаў (напр., барыю). Спантаннае Дз.я. адкрыта эксперыментальна Г.М.Флёравым і К.А.Петржакам (1940).

А.В.Берастаў.

Паслядоўныя стадыі дзялення ядра.

т. 6, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІХРАВЫ́Я ТО́КІ,

токі Фуко, замкнутыя эл. токі ў масіўных правадніках, выкліканыя пераменным магн. полем. Напрамак віхравых токаў вызначаецца паводле Ленца правіла. Замыкаюцца віхравыя токі непасрэдна ў праводнай масе з утварэннем віхрападобных контураў і награваюць яе ў адпаведнасці з Джоўля—Ленца законам, што выкарыстоўваецца, напр., для індукцыйнага нагрэву металаў. Узаемадзеянне віхравых токаў з асн. магн. полем прыводзіць у мех. рух (або затарможвае) праводнае цела, што выкарыстоўваецца ў вымяральнай тэхніцы, эл. машынах пераменнага току і інш.

Віхравыя токі выклікаюць скін-эфект (магн. ў магнітаправодах, эл. ў любым правадніку, па якім цячэ пераменны ток), што павялічвае страты энергіі. Для змяншэння страт магнітаправоды вырабляюць з тонкіх лістоў, ізаляваных адзін ад аднаго; выкарыстоўваюць сталь з павышанай колькасцю крэмнію, замяняюць ферамагн. матэрыялы магнітадыэлектрыкамі; высокачастотныя правады вырабляюць пустацелыя або з асобных жыл, ізаляваных адна ад адной.

т. 4, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАГА́ЛЬНЫ КО́НТУР,

электрычны ланцуг, у якім могуць адбывацца ваганні з частатой, што вызначаецца параметрамі самога ланцуга. Найб. просты вагальны контур складаецца са шпулі індуктыўнасці і кандэнсатара і выкарыстоўваецца як рэзанансная сістэма радыётэхн. прылад у дыяпазоне частот ад 50 кГц да 300 МГц (на больш высокіх частотах — двухпровадныя і кааксіяльныя лініі перадачы, аб’ёмныя і адкрытыя рэзанатары).

У ідэальным вагальным контуры ўзбуджаюцца свабодныя гарманічныя ваганні, у рэальным з-за страт энергіі амплітуда ваганняў паступова змяншаецца, а перыяд павялічваецца (ваганні затухаюць). Якасць вагальнага контура вызначаецца дыхтоўнасцю вагальнай сістэмы. Калі ў вагальны контур уключыць генератар пераменнага току, праз некаторы час у ім усталююцца вымушаныя ваганні з частатой генератара. Залежнасць амплітуды такіх ваганняў ад частаты наз. рэзананснай характарыстыкай контуру. Рэзкае павелічэнне амплітуды назіраецца пры частотах, блізкіх да ўласнай частаты вагальнага контура (гл. Рэзананс).

П.С.Габец.

т. 3, с. 427

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНЫЯ СПЕ́КТРЫ,

спектры, якія ўзнікаюць пры выпрамяненні і паглынанні фатонаў свабоднымі ці слаба ўзаемадзейнымі атамамі (атамнымі газамі, парай невял. шчыльнасці). Лінейчастыя, складаюцца з асобных спектральных ліній, кожная з якіх адпавядае пераходу электрона паміж двума адпаведнымі ўзроўнямі энергіі атама.

Спектральныя лініі характарызуюцца пэўнымі значэннямі частаты ваганняў святла ν, хвалевага ліку ν/c і даўжыні хвалі λ=c/ν, дзе c — скорасць святла ў вакууме. Для найбольш простых атамных спектраў, якімі з’яўляюцца спектры атама вадароду і вадародападобных іонаў, месцазнаходжанне спектральных ліній вызначаецца па формуле: 1 λ = ν c = Eni Enk hc = RZ2 ( 1 n2k 1 n2i ) , дзе En — энергія ўзроўню, h — Планка пастаянная, R — Рыдберга пастаянная, Z — атамны нумар, n — галоўны квантавы лік. Спектральныя лініі аб’ядноўваюцца ў спектральныя серыі, адна з якіх (пры nk=2, ni=3, 4, 5) наз. серыяй Бальмера; адкрыццё яе ў 1885 дало пачатак выяўленню заканамернасцяў у атамных спектрах. Спектры атамаў шчолачных металаў, якія маюць адзін знешні электрон, падобны да спектра атама вадароду, але зрушаны ў бок меншых частот, колькасць спектральных серый павялічана, заканамернасці ў спектрах апісваюцца больш складанымі формуламі. Атамы, у якіх дабудоўваюцца dw- і f-абалонкі (гл. ў арт. Перыядычная сістэма элементаў Мендзялеева), маюць найб. складаныя спектры (многа соцень і тысяч ліній).

Тэорыя атамных спектраў заснавана на характарыстыцы электронаў у атаме квантавымі лікамі n і 1 і дазваляе вызначыць магчымыя ўзроўні энергіі. Вывучаны спектры вял. колькасці нейтральных і іанізаваных атамаў, расшчапленне спектральных ліній атамаў у магнітным (Зеемана з’ява) і ў электрычным (Штарка з’ява) палях. З дапамогай атамных спектраў вызначаецца састаў рэчыва (спектральны аналіз).

Літ.:

Ельяшевич М.А. Атомная и молекулярная спектроскоп я. М., 1962;

Фриш С.Э. Оптические спектры атомов М.; Л., 1963;

Собельман И.И. Введение в теорию атомных спектров. М., 1977.

М.А.Ельяшэвіч.

т. 2, с. 68

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСНО́ЎНЫ АБМЕ́Н,

колькасць энергіі, затрачанай арганізмам чалавека ці жывёлы пры магчыма поўным мышачным спакоі для забеспячэння мінім. ўзроўню абмену рэчываў і функцыян. актыўнасці, неабходных для падтрымання жыцця. Мінім. энергет. затраты арганізма чалавека вызначаюцца ў стане мышачнага спакою ў ляжачым становішчы, нашча, праз 12—16 гадз пасля прыняцця ежы, пры т-ры камфорту (18—20 °C). Вымяраецца ў кіладжоўлях, кілакалорыях на адзінку масы або паверхні цела, за 1 гадз або 1 суткі; залежыць ад масы цела, росту, узросту, полу, віду, характару харчавання, умоў месцажыхарства і інш. Больш высокі ў маладых людзей, у мужчын (у параўнанні з жанчынамі), у людзей, якія займаюцца фіз. працай, у спартсменаў. У людзей, што галадаюць або доўга хварэюць, асноўны абмен паніжаны Паказанні асноўнага абмену выкарыстоўваюць для дыягностыкі некаторых захворванняў (напр., эндакрынных залоз). У жывёлагадоўлі па Асноўным абмене вызначаюць нормы кармлення.

т. 2, с. 39

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)