АКУ́СТЫКА

(ад грэч. akustikos слыхавы),

раздзел фізікі, які вывучае пругкія ваганні і хвалі ад самых нізкіх частот (умоўна ад 0 Гц) да самых высокіх (10​12—10​13 Гц), іх узаемадзеянне з рэчывам і выкарыстанне.

Першыя звесткі аб акустыцы — у Піфагора (6 ст. да н.э.). Развіццё акустыкі звязана з імёнамі Арыстоцеля, Г.Галілея, І.Ньютана, Г.Гельмгольца. Вынікі класічнай акустыкі падагульніў Дж.Рэлей. Значны ўклад у развіццё акустыкі зрабілі М.М.Андрэеў, А.А.Харкевіч, Л.М.Брэхаўскіх, Л.І.Мандэльштам, М.А.Леантовіч і інш. Новы этап развіцця акустыкі ў 20 ст. звязаны з развіццём электра- і радыётэхнікі, электронікі.

Агульная акустыка на аснове лінейных дыферэнцыяльных ураўненняў вывучае заканамернасці адбіцця і пераламлення акустычных хваляў на паверхні, распаўсюджванне, інтэрферэнцыю і дыфракцыю іх у суцэльных асяроддзях, ваганні ў сістэмах з засяроджанымі параметрамі. Акустыка рухомых асяроддзяў і статыстычная разглядаюць уплыў руху і нерэгулярнасцяў асяроддзя на распаўсюджванне, выпрамяненне і прыём гукавых хваляў. Фізічная акустыка вывучае залежнасць характарыстык хваляў ад уласцівасцей і стану асяроддзя; яе падраздзелы: малекулярная акустыка (паглынанне і дысперсія гуку), квантавая акустыка (разглядае пругкія хвалі як фаноны, пры нізкіх т-рах, ва ультра- і гіпергукавым дыяпазонах). Псіхафізіялагічная акустыка вывучае ўздзеянне гуку на чалавека. Асн. задача электраакустыкі (магнітаакустыкі) — распрацоўка гучнагаварыцеляў, мікрафонаў, тэлефонаў і інш. выпрамяняльнікаў і прыёмнікаў гуку. Гідраакустыка і атмасферная акустыка — выкарыстанне гуку для падводнай лакацыі, сувязі, зандзіравання атмасферы і інш. Задачы архітэктурнай і будаўнічай акустыкі — паляпшэнне распаўсюджвання і ўспрымання мовы і музычных гукаў у памяшканнях, памяншэнне шуму (гл. Акустыка архітэктурная, Акустыка музычная). Нелінейная акустыка, акустаоптыка і акустаэлектроніка вывучаюць узаемадзеянне акустычных хваляў з фіз. палямі і часціцамі. Новыя магчымасці візуалізацыі гукавых палёў дала акустычная галаграфія. На Беларусі даследаванні па акустыцы праводзяцца з 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН. Найб. значныя вынікі атрыманы Ф.І.Фёдаравым у тэорыі пругкіх хваляў у крышталях.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М., 1953;

Стретт Дж.В. (лорд Рэлей). Теория звука: Пер. с англ. Т. 1—2. 2 изд. М., 1955;

Скучик Е. Основы акустики: Пер. с нем. Т. 1—2. М., 1958—59;

Фёдоров Ф.И. Теория упругих волн в кристаллах. М., 1965;

Красильников В.А., Крылов В.В. Введение в физическую акустику. М., 1984.

А.Р.Хаткевіч.

т. 1, с. 218

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАФІ́ЗІКА

(ад геа... + фізіка),

навука аб фіз. палях Зямлі, фіз. уласцівасцях і будове рэчыва Зямлі і працэсах ва ўсіх геасферах. У вузкім сэнсе геафізіка — навука аб фіз. з’явах у цвёрдых сферах: зямной кары, мантыі Зямлі, ядры Зямлі. Фіз. працэсы ў гідрасферы вывучае гідрафізіка, у атмасферы — фізіка атмасферы.

Элементы натуральнай геафізікі вядомы з прац антычных вучоных. У 17—19 ст. адкрыты асн. законы макраскапічнай фізікі, створаны першыя геафізічныя абсерваторыі. Як комплексная навука геафізіка аформілася ў сярэдзіне 19 ст., у сучасным разуменні — з 1960-х г. Асновы тэорыі і прыкладной геафізікі распрацавалі Д.Ф.Араго, (Францыя), Б.Гутэнберг (ЗША), Х.Джэфрыс (Вялікабрытанія), рус. і сав. вучоныя А.Дз.Архангельскі, Р.А.Гамбурцаў, М.С.Маладзенскі, А.М.Ціханаў, П.П.Лазараў, А.І.Забароўскі, У.У.Фядынскі, Э.Э.Фатыяды і інш. Геафізіка падзяляецца на фізіку Зямлі і пошукава-разведвальную геафізіку (гл. Геафізічная разведка). Фізіка Зямлі — тэарэт. навука, якая фіз. метадамі даследуе глыбінную будову і глыбінныя працэсы Зямлі. У ёй вылучаюцца буйныя раздзелы: геадынаміка, геатэрмія, гравіметрыя, сейсмалогія, геамагнетызм (гл. Зямны магнетызм), геаэлектрыка, даследаванні мінералаў і горных парод пры высокіх ціску і т-рах. Пошукава-разведвальная геафізіка — прыкладная навука, якая фіз. і матэм. метадамі даследуе будову верхняй часткі зямной кары з мэтай пошукаў і разведкі радовішчаў карысных выкапняў, для вырашэння задач гідрагеалогіі і інж. геалогіі. У ёй вылучаюцца структурная (пошукі нафтавых і газавых радовішчаў), рудная (радовішчаў руд і рудных вузлоў) і прамысл. геафізіка (даследаванні геал. разрэзу свідравін). У 1970-я г. вылучылася вылічальная геафізіка, мэта якой — назапашванне, захоўванне і аналіз інфармацыі з шырокім выкарыстаннем ЭВМ. Геафізіка цесна звязана з фіз.-матэм., тэхн. (аўтаматыка, электроніка, кібернетыка, касманаўтыка) і геал. навукамі (геалогія, геахімія, планеталогія, тэктоніка і інш).

На Беларусі геафізіка развіваецца з 1930-х г., калі пачалі праводзіць гравіметрычную і магнітную здымку. З 1950-х г. вядзецца планамернае геафіз. вывучэнне тэр. краіны. Даследаванні праводзяць з 1957 у Геолагаразведачным навукова-даследчым інстытуце, з 1960 у Плешчаніцкай геафізічнай абсерваторыі, з 1971 у Інстытуце геалагічных навук Нац. АН Беларусі, Геафізічнай экспедыцыі і інш. падраздзяленнях ВА «Беларусьгеалогія», а таксама ў Гомельскім дзярж. ун-це і БДУ.

Г.І.Каратаеў.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯМАТЫ́ЧНЫ МЕ́ТАД,

спосаб пабудовы навук. тэорыі ў выглядзе сістэмы пастулатаў (аксіём) і правіл вываду (аксіяматыкі), што дае магчымасць логікавымі разважаннямі атрымліваць сцвярджэнні (тэарэмы) дадзенай тэорыі.

Узнік у работах стараж.-грэч. матэматыкаў. Напр., у «Асновах» Эўкліда праведзена ідэя атрымання асн. зместу геаметрыі з невялікай колькасці аксіём, праўдзівасць якіх лічыцца відавочнай. Адкрыццё ў 19 ст. неэўклідавых геаметрый стымулявала ўзнікненне праблем больш агульнага характару (напр., несупярэчлівасці, паўнаты і незалежнасці той ці інш. сістэмы аксіём). Гэта адкрыла шлях да фармалізаванага развіцця тэорый: пошуку інш. сістэм паняццяў (тэорый, галін ведаў), якія падпарадкоўваюцца тым жа аксіёмам, выяўлення новых інтэрпрэтацый пэўнай сістэмы аксіём, што дало магчымасць адкрываць новыя навук. факты. Д.Гільберт і яго школа спадзяваліся на аснове аксіяматычнага метаду вырашыць гал. пытанні абгрунтавання матэматыкі. Аднак вынікі аўстр. і амер. матэматыка і логіка К.Гёдэля (1931) выявілі неажыццявімасць гэтай праграмы, напр. тэарэма аб непаўнаце арыфметыкі сведчыць аб абмежаванасці аксіяматычнага метаду. У 20 ст. дзякуючы развіццю матэматычнай логікі стала магчымым аксіяматызаваць тыя сродкі логікі, з дапамогай якіх выводзяцца адны сцвярджэнні аксіяматычнай тэорыі з інш. яе сцвярджэнняў, што мае істотнае значэнне для аўтаматызацыі разумовай працы.

Сучасныя навук. тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, наз. дэдуктыўнымі. Усе паняцці такіх тэорый (акрамя фіксаванай колькасці першапачатковых) уводзяцца пры дапамозе вызначэнняў, якія выражаюць іх змест праз першапач. паняцці. У той ці інш. меры дэдуктыўныя доказы, характэрныя для аксіяматычнага метаду, выкарыстоўваюцца ў многіх навуках, найб. у матэматыцы, логіцы, некаторых раздзелах фізікі, біялогіі і інш. Тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, нярэдка маюць выгляд фармалізаваных сістэм, якія даюць дакладнае апісанне лагічных сродкаў вываду тэарэм з аксіём. Доказ такой тэорыі ўяўляе сабой паслядоўнасць формул, кожная з якіх з’яўляецца аксіёмай або атрымліваецца з папярэдніх формул па адным з прынятых правіл вываду. У адрозненне ад такіх фармальных доказаў уласцівасці самой фармальнай сістэмы ў цэлым вывучаюцца змястоўнымі сродкамі метатэорыі. Асн. патрабаванні да аксіяматычных фармальных сістэм: несупярэчлівасць, паўната, незалежнасць аксіём. Аксіяматычны метад — адзін з метадаў пабудовы навук. ведаў, які мае абмежаванае выкарыстанне, бо патрабуе высокага ўзроўню развіцця навук. тэорыі. Нават некаторыя дастаткова багатыя навук. тэорыі (напр., арыфметыка натуральных лікаў) не дапускаюць поўнай аксіяматызацыі. Гэта сведчыць аб немагчымасці поўнай фармалізацыі навук. ведаў.

Літ.:

Садовский В.Н. Аксиоматический метод построения научного знания // Философские вопросы современной формальной логики. М., 1962;

Столл Р. Множества. Логика: Аксиоматич. теории.: Пер. с англ. М., 1968;

Новиков П.С. Элементы математической логики. 2 изд. М., 1973.

Р.Т.Вальвачоў, У.К.Лукашэвіч.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕЛІЯТЭ́ХНІКА

(ад гелія... + тэхніка),

галіна тэхнікі, якая займаецца распрацоўкай тэарэт. асноў, практычных метадаў і тэхн. сродкаў пераўтварэння энергіі сонечнай радыяцыі ў інш. віды энергіі. Выкарыстоўвае розныя спосабы пераўтварэння сонечнай энергіі: цеплавы (ажыццяўляецца ў сонечных печах, сонечных воданагравальніках, апрасняльніках, сушылках, цяпліцах і інш.), фотаэлектрычны (у сонечных батарэях), тэрмаэлектрычны (у сонечных тэрмаэлектрычных генератарах), тэрмаэмісійны (у тэрмаэмісійных пераўтваральніках энергіі). Паводле рабочых т-р геліятэхніка падзяляецца на высока- (да 3000—3500 °C) і нізкатэмпературную (100—200 °C).

Паток сонечнай радыяцыі «дармавы» і невычэрпны, яго шчыльнасць на ўзроўні мора прыкладна 1 кВт/м² (у геліятэхн. разліках 0,815 кВт/м²). Спробы выкарыстання гэтага выпрамянення рабіліся яшчэ ў старажытнасці, аднак практычнага значэння не мелі. У 1770 Х.Б. дэ Сасюр (Швейцарыя) пабудаваў геліяўстаноўку тыпу «гарачая скрыня». Як асобная галіна тэхнікі геліятэхніка развіваецца з 2-й пал. 19 ст., калі былі створаны доследныя ўзоры паветраных і паравых сонечных рухавікоў (Францыя, Швецыя, ЗША). У Расіі ў 1890 В.К.Цэраскі правёў эксперыменты па плаўцы розных металаў у фокусе парабалічнага люстэрка. У 1912 каля Каіра (Егіпет) пабудавана сонечная энергетычная ўстаноўка магутнасцю каля 45 кВт. У 1930-я г. распрацаваны метады разліку геліяўстановак для атрымання эл. энергіі, апраснення вады, сушкі і інш. Даследаванні па прамым пераўтварэнні прамянёвай энергіі ў электрычную пашырыліся ў сувязі з асваеннем касм. прасторы. Значнае развіццё геліятэхніка атрымала ў Францыі, ЗША, Японіі, ПАР, Аўстраліі, Германіі, з краін СНД — у Расіі, Арменіі, Туркменіі, Узбекістане. Выкарыстанне сродкаў геліятэхнікі найб. эфектыўнае ў шыротах са значнай сонечнай радыяцыяй для энергазабеспячэння малаэнергаёмістых разгрупаваных спажыўцоў. У сувязі са збядненнем традыц. крыніц энергіі яны перспектыўныя і ў рэгіёнах з умераным кліматам, напр., геліятэхніка развіваецца ў Канадзе, Даніі, Швецыі. Павышэнне эфектыўнасці геліясістэм і пераадоленне прынцыповых недахопаў (невысокая шчыльнасць і няўстойлівасць сонечнай энергіі) забяспечваюцца значнымі памерамі паверхні, якая ўлоўлівае сонечную радыяцыю, яе канцэнтрацыяй на паверхні геліяпераўтваральніка, акумуляваннем цеплавымі, эл., хім. і інш. акумулятарамі. У адпаведнасці з гэтымі патрабаваннямі ствараецца шырокі спектр геліяўстановак рознага прызначэння.

На Беларусі даследаванні і распрацоўкі сродкаў і элементнай базы геліятэхнікі вядуцца з 1980-х г. у Акад. навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава» (АНК ІЦМА), Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН Беларусі, Цэнтр. НДІ механізацыі і электрыфікацыі сельскай гаспадаркі і інш. У АНК ІЦМА створаны доследныя ўзоры калектараў сонечнай энергіі на цеплавых трубах (разам з Армянскім аддз. Усесаюзнага НДІ крыніц току), распрацаваны праект «Сядзіба 21 стагоддзя», у энергабалансе якога значная роля сонечнай энергіі, розныя тыпы геліяцеплапераўтваральных сістэм — геліяводападагравальнікі магутнасцю 0,4—100 кВт, сонечныя радыятары (абагравальнік, сонечныя кухня, цяпліца, сушылка і інш.). Асвоены выпуск геліямодуляў, аснашчаных бакам-акумулятарам (захоўвае цяпло на працягу тыдня).

Літ.:

Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;

Мак-Вейг Д. Применение солнечной энергии: Пер. с. англ. М., 1981.

У.Л.Драгун, С.У.Конеў.

т. 5, с. 141

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНАЯ ТЭ́ХНІКА,

галіна тэхнікі, якая распрацоўвае і вырабляе сродкі аўтаматызацыі матэм. вылічэнняў, апрацоўкі інфармацыі і кіравання (напр., электронныя вылічальныя машыны, вылічальныя сістэмы, комплексы, іх перыферыйнае абсталяванне) у розных галінах дзейнасці чалавека; навука аб прынцыпах пабудовы, дзеяння і праектавання гэтых сродкаў. Вылічальная тэхніка пашырана ў вылічальных цэнтрах, сістэмах сувязі, сістэмах навігацыі плавальных і лятальных апаратаў, касм. аб’ектаў і інш., сістэмах аўтам. кіравання для збору, апрацоўкі і выкарыстання інфармацыі, інфарм. пошукавых сістэмах і інш. Сістэмы кіравання з выкарыстаннем вылічальнай тэхнікі бываюць вялікімі сістэмамі, што ахопліваюць усю краіну, раён, галіну прам-сці цалкам або групу прадпрыемстваў, і лакальнымі, якія дзейнічаюць у межах аднаго з-да або цэха. Кірункі сучаснай вылічальнай тэхнікі: фіз.-тэхн. асновы элементнай базы вылічальнай тэхнікі; архітэктура ЭВМ; матэматычнае забеспячэнне выліч. сістэм і комплексаў; выкарыстанне сродкаў вылічальнай тэхнікі (гл. Аўтаматызацыя вытворчасці, Аўтаматызаваная сістэма кіравання).

Першыя прыстасаванні для механізацыі вылічэнняў (абак, кітайскі суанпан, лічыльнікі і інш.) вядомыя з глыбокай старажытнасці, вылічальныя прыстасаванні (шкала Непера, лагарыфмічная лінейка, арыфм. машына франц. вучонага Б.Паскаля і інш.) — з 17 ст. У 19 ст. англ. вучоны Ч.Бэбідж прапанаваў праект «аналітычнай машыны» (гл. Вылічальная машына). У канцы 19 — пач. 20 ст. развіццё вылічальнай тэхнікі звязана з пабудовай аналагавых вылічальных машын. У 1944 у ЗША пабудавана першая лічбавая электронная вылічальная машына «МАРК-1» на эл.-магн. рэле, а першая хуткадзейная ЭВМ «ЭНІАК» — у 1946 (першая ў кантынентальнай Еўропе малая ЭВМ «МЭСМ» распрацавана ў 1950 у АН Украіны).

На Беларусі вылічальная тэхніка ў сваім развіцці прайшла шлях ад першай лямпавай ЭВМ да стварэння выліч. сістэм і аўтаматызаваных сістэм рознага прызначэння. Навук. даследаванні вядуцца ў БДУ, НДІ ЭВМ, Бел. ун-це інфарматыкі і радыёэлектронікі, ін-тах матэматыкі, тэхн. кібернетыкі АН, Ваеннай акадэміі і інш. Першая ЭВМ «Прамень» распрацавана ў Ін-це фізікі і матэматыкі АН у канцы 1950-х г. Выліч. машыны М-3М асвоены Мінскім з-дам ЭВМ імя Арджанікідзе ў 1959; з 1960 пачаўся выпуск вылічальных машын «Мінск» 1-га і 2-га пакаленняў; з 1973 — машын 3-га пакалення адзінай сістэмы электронных вылічальных машын — ЕС ЭВМ; у 1980-я г. распрацаваны высокапрадукцыйныя выліч. сістэмы ЕС ЭВМ, а таксама комплексы на трансп. сродках; у 1990-я г. — новае пакаленне ЭВМ — сям’я «Мінск-9000» (ЕС-1230). За распрацоўку і асваенне сродкаў вылічальнай тэхнікі спец. прызначэння спецыялістам Мінскага з-да ЭВМ прысуджана Дзярж. прэмія СССР 1985. За ўкараненне вылічальнай тэхнікі ў вытв. тэхналогію работнікам Брэсцкага эл.-мех. з-да прысуджана Дзярж. прэмія СССР 1981. Стваральнікі ЕС ЭВМ адзначаны Ленінскай прэміяй 1983, Дзярж. прэміямі СССР 1978, 1983.

Літ.:

Заморин А.П. Мячев А.А., Селиванов Ю.П. Вычислительные машины, системы, комплексы: Справ. М., 1985.

М.П.Савік.

т. 4, с. 312

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна хіміі, якая вывучае злучэнні вугляроду з інш. элементамі (арганічныя злучэнні) і іх ператварэнні. Займаецца сінтэзам і вызначэннем структуры арган. злучэнняў, вывучэннем сувязі хім. будовы рэчываў з рэакц. здольнасцю і фіз. ўласцівасцямі, практ. выкарыстаннем. Падзяляецца на стэрэахімію, хімію высокамалекулярных злучэнняў, прыродных рэчываў (антыбіётыкаў, вітамінаў, гармонаў і інш.), металаарган., фторарган., комплексных злучэнняў, фарбавальнікаў. Цесна звязана з біяхіміяй, медыцынай, біялогіяй, арган. геахіміяй, малекулярнай біялогіяй і інш. галінамі навук.

З’явілася ў пач. 19 ст. ў выніку абагульнення ведаў пра ўласцівасці рэчываў жывёльнага і расліннага паходжання і ўяўленняў таго часу аб жыццёвай сіле (vis vitalis), якая быццам бы стварае арган. рэчывы толькі ў жывых арганізмах. Тэрмін «арганічная хімія» ўведзены Ё.Берцэліусам (1827). Сінтэз мачавіны (Ф.Вёлер; 1828), аніліну (М.М.Зінін; 1842), воцатнай кіслаты (А.Кольбе; 1845), рэчываў тыпу тлушчаў (П.Бертло; 1854), цукрыстага рэчыва (А.М.Бутлераў; 1861) паказаў магчымасць штучнага атрымання арган. рэчываў. З 2-й чвэрці 19 ст. пачалі развівацца тэарэт. ўяўленні арганічнай хіміі, у т. л. тэорыя радыкалаў (Ю.Лібіх, Вёлер, Э.Франкленд, Р.Бунзен), тэорыя тыпаў (Ж.Дзюма, Ш.Жэрар і О.Ларан), паняцце пра валентнасць хім. элементаў, чатырохвалентнасць вугляроду і здольнасць яго атамаў ствараць складаныя малекулы. Абгрунтаваная ў 1861 Бутлеравым хімічнай будовы тэорыя прапанавала існаванне сувязі паміж будовай і ўласцівасцямі арган. злучэнняў, растлумачыла з’яву прасторавай ізамерыі арган. злучэнняў. А.Кекуле ў 1865 створана тэорыя будовы араматычных злучэнняў (на прыкладзе бензолу); у 1874 Я.Вант-Гоф і Ж.Ле Бель заклалі асновы стэрэахіміі, вылучылі аптычную ізамерыю і геаметрычную ізамерыю арган. рэчываў. Развіццё арганічнай хіміі ў пач. 20 ст. звязана з дасягненнямі квантавай фізікі і электронных тэорый хім. сувязі. Вызначаны тыпы хім. сувязі; Г.Льюіс, В.Косель, К.Інгалд, Л.Полінг распрацавалі і дапоўнілі ўяўленнямі квантавай хіміі і квантава-хімічнымі разлікамі электронную тэорыю будовы арган. злучэнняў, прадказалі і растлумачылі арганічнай хіміі рэакцыйную здольнасць. У 2-й пал. 20 ст. пачалося станаўленне фізічнай арганічнай хіміі, у якой абагульнены ўяўленні па механізмах рэакцый і сувязі паміж структурай арган. злучэнняў і іх рэакц. здольнасцю; шырокае выкарыстанне ў даследаваннях храматаграфіі, рэнтгенаскапіі, масспектраскапіі, метадаў ЭПР, ЯМР, ІЧ- і УФ-спектраскапіі. Сінтэзаваны новыя класы крэмнійарган. злучэнняў (полісілаксаны), поліаміды (нейлон), фторпалімеры (тэфлон), цэнавыя злучэнні пераходных металаў (ферацэн), фізіялагічна актыўныя злучэнні, лекавыя прэпараты, атрутныя рэчывы, сродкі аховы раслін, антыпірэны. Метады арганічнай хіміі разам з фіз. метадамі даследавання выкарыстоўваюцца ў вызначэнні будовы нуклеінавых кіслотаў, бялкоў, складаных прыродных злучэнняў, з дапамогай матэм. мадэлявання ажыццяўляецца мэтанакіраваны сінтэз арган. рэчываў з зададзенымі ўласцівасцямі. Магчымасці арганічнай хіміі дазволілі сінтэзаваць хларафіл, вітамін B12 (Р.Вудварт), полінуклеатыды (А.Тод), распрацаваць аўтаматызаваны сінтэз ферментаў. Сучаснае дасягненне арганічнай хіміі ў геннай інжынерыі — сінтэз актыўнага гена (Х.Каран; 1976). Выкарыстанне дасягненняў арганічнай хіміі прывяло да стварэння тэхналогій вытв-сці сінт. каўчукаў, пластычных масаў, сінт. валокнаў, фарбавальнікаў, кінафотаматэрыялаў, атрутных рэчываў, сродкаў аховы раслін, духмяных рэчываў, лек. прэпаратаў.

На Беларусі даследаванні па арганічнай хіміі пачаліся ў 1924 у БДУ і вядуцца ў ін-тах фізіка-арган. і біяарган. хіміі АН, БДУ, Бел. тэхнал. ун-це, с.-г., мед. і інш. НДІ. Сінтэзаваны і вывучаны ператварэнні металаарган., поліхлорарган., пераксідных злучэнняў, ацыклічных і гетэрацыклічных злучэнняў, стэроідаў, гетэрастэроідаў, простагландзінаў, нуклеатыдаў, тэрпеноідаў. Буйнейшыя прадпрыемствы: ВА «Палімір» (г. Наваполацк), ВА «Азот» (г. Гродна), Магілёўскі камбінат сінт. валокнаў.

Літ.:

Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. Кн. 1—2. 2 изд. М., 1974;

Нейланд О.Я. Органическая химия. М., 1990.

К.Л.Майсяйчук.

т. 1, с. 467

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ХІ́МІЯ,

навука аб прынцыпах і метадах вывучэння саставу рэчываў. Уключае тэарэт. асновы хім. аналізу, метады вызначэння кампанентаў у рэчывах ці матэрыялах, сістэм. аналіз канкрэтных аб’ектаў. Тэарэт. асновы аналітычнай хіміі — метралогія хім. Аналізу (апрацоўка вынікаў); вучэнне аб адборы і падрыхтоўцы аналітычных проб, складанні схемы і выбары метадаў, прынцыпах і шляхах аўтаматызацыі аналізу. Аналітычная хімія звязана з дасягненнямі фізікі, матэматыкі, біялогіі, розных галін тэхнікі. Асаблівасць аналітычнай хіміі — вывучэнне індывід. спецыфічных уласцівасцяў і характарыстык аб’ектаў. У залежнасці ад мэты аналізу адрозніваюць якасны аналіз і колькасны аналіз; у залежнасці ад кампанентаў, якія неабходна выявіць — ізатопны аналіз, элементны аналіз, структурна-групавы (у т. л. функцыянальны аналіз), малекулярны і фазавы аналіз; у залежнасці ад прыроды рэчыва — аналіз арган. і неарган. рэчываў. Вызначэнне рэчыва ці кампанента праводзяць хімічнымі (гравіметрычны аналіз, цітрыметрычны аналіз), фізіка-хімічнымі (электрахім., фотаметрычны аналіз, кінетычныя метады аналізу), фізічнымі (спектральныя, ядзерна-фіз. і інш.) і біял. метадамі аналізу. Практычна ўсе метады аналітычнай хіміі заснаваны на залежнасці ўласцівасцяў аб’ектаў, якія можна мераць (маса, аб’ём, святлопаглынанне, эл. ток і інш.), ад іх саставу.

Заснавальнікам аналітычнай хіміі як навукі лічыцца Р.Бойль, які ўвёў паняцце «хімічны аналіз». Класічная аналітычная хімія (17—18 ст.) выкарыстоўвала пераважна гравіметрычны і цітрыметрычны метады аналізу. Да 1-й пал. 19 ст. адкрыты многія хім. элементы, выдзелены састаўныя часткі некаторых прыродных рэчываў, устаноўлены пастаянства саставу закон, кратных адносін закон, масы захавання закон. Распрацаваны сістэматычны аналіз (ням. хімікі Г.Розе, К.Фрэзеніус і рус. хімік М.А.Мяншуткін), створаны цітрыметрычны аналіз арган. злучэнняў (ням. хімік Ю.Лібіх). У канцы 19 ст. складалася тэорыя аналітычнай хіміі, заснаваная на вучэнні аб хім. раўнавазе ў растворах з удзелам іонаў (у асн. В.Оствальд). У 20 ст. з’явіліся метады мікрааналізу арган. злучэнняў (аўстр. хімік Ф.Прэгль), паляраграфіі (чэшскі хімік Я.Гейраўскі), рус. біяхімікам М.С.Цветам адкрыты метад храматаграфіі (1903) і створаны яго варыянты. Развіццё сучаснай аналітычнай хіміі звязана са з’яўленнем мноства фізіка-хім. і фіз. метадаў аналізу (мас-спектраметрычны, рэнтгенаўскі, ядзерна-фізічныя). Прапанаваны плазмавыя крыніцы току для атамна-эмісійнага аналізу, распрацаваны метады фотаметрычнага аналізу, атамна-адсарбцыйнай спектраскапіі. У сувязі з неабходнасцю аналізу ядз., паўправадніковых і інш. матэрыялаў высокай чысціні створаны радыеактывацыйны аналіз, хіміка-спектральны, іскравая мас-спектраметрыя, вольтамперметрыя — метады, што дазваляюць вызначыць дамешкі ў чыстых рэчывах з канцэнтрацыяй да 10​-7—10​-8%. Распрацаваны метады неперарыўнага і дыстанцыйнага аналізу. Перавага аддаецца метадам неразбуральнага кантролю, лакальнага аналізу (рэнтгенаспектральны мікрааналіз, мас-спектраметрыя другасных іонаў і інш.). Лакальным аналізам карыстаюцца пры аналізе паверхневых слаёў цвёрдых матэрыялаў ці ўключэнняў горных парод.

Сучасная аналітычная хімія карыстаецца аўтам. ці аўтаматызаванымі варыянтамі вызначэння рэчываў. Метады аналітычнай хіміі дазваляюць кантраляваць тэхнал. працэсы і якасць прадукцыі ў многіх галінах вытв-сці, праводзіць пошук і разведку карысных выкапняў. Аналітычная хімія садзейнічала развіццю ат. энергетыкі, электронікі, акіяналогіі, біялогіі, медыцыны, крыміналістыкі, археалогіі, касм. даследаванняў. На Беларусі сістэм. даследаванні па аналітычнай хіміі пачаліся ў 1935 у БДУ і вядуцца ў ін-тах фіз., хім. і геал. профілю АН, у ВНУ і ведамасных н.-д. установах. Распрацаваны шэраг храматаграфічных метадаў, выдзялення з сумесяў і вызначэння іонаў, комплексаў металаў, алкалоідаў і інш. рэчываў (пад кіраўніцтвам Р.Л.Старобінца); хім. метадаў вызначэння металаў (В.Р.Скараход); даследаваны ўплыў экстракцыйных працэсаў розных тыпаў на функцыянаванне вадкасных і плёначных іонаселектыўных электродаў на аснове вышэйшых чацвярцічных амоніевых соляў (Я.М.Рахманько) і сульфакіслот (У.У.Ягораў). Распрацаваны і ўкаранёны: аніён- і катыёнселектыўныя электроды; нітратамер і іонамер; методыкі вызначэння нітратаў, свінцу, кадмію, вісмуту, ртуці, цынку, алкалоідаў, алкілсульфатаў і інш., газахраматаграфічнага вызначэння фенолаў, пестыцыдаў у вадзе, прадуктах харчавання; экстракцыйна-спектральныя і храматаграфічныя метады аналізу с.-г. аб’ектаў; метады аналізу паўправадніковых матэрыялаў, сплаваў, плёнак, ферытаў.

Літ.:

Золотов Ю.А. Аналитическая химия: Проблемы и достижения. М., 1992.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ЛГЕБРА,

навука пра сістэмы аб’ектаў той ці інш. прыроды, у якіх устаноўлены аперацыі, па сваіх уласцівасцях падобныя на складанне і множанне лікаў (алг. аперацыі). Задачы і метады алгебры ствараліся паступова, у выніку пошукаў агульных прыёмаў рашэння аднатыпных арыфм. задач (пераважна састаўлення і рашэння ўраўненняў).

Вялікі ўплыў на развіццё алг. ідэй і сімволікі зрабіла «Арыфметыка» Дыяфанта (3 ст.). Тэрмін «алгебра» паходзіць ад назвы твора Мухамеда аль-Харэзмі «Альджэбр аль-мукабала» (9 ст.), які мае агульныя метады рашэння алгебраічных ураўненняў (АУ) 1-й і 2-й ступеняў. У канцы 15 ст. замест грувасткіх слоўных апісанняў алг. дзеянняў у матэм. творах з’яўляюцца знакі «+» і «-», потым знакі ступеняў, кораняў, дужкі. У канцы 16 ст. Ф.Віет першы выкарыстаў літарныя абазначэнні. Да сярэдзіны 17 ст. ў асн. склалася сучасная алг. сімволіка. У далейшым погляд на алгебру мяняўся. Алгебра 17—18 ст. займалася літарнымі вылічэннямі (рашэнне АУ, тоеснае пераўтварэнне формул і інш.) у адрозненне ад арыфметыкі, якая аперыруе канкрэтнымі лікамі. Да сярэдзіны 18 ст. алгебра склалася прыблізна ў аб’ёме цяперашняй т.зв. элементарнай алгебры. Алгебра 18—19 ст. з’яўляецца ў асн. алгебрай мнагачленаў. Першай гіст. задачай алгебры было рашэнне АУ з адным невядомым. У 16 ст. італьян. матэматыкамі была знойдзена формула для рашэння ўраўненняў 3-й ступені (формула Кардана), потым метад рашэння ўраўненняў 4-й ступені (метад Ферары). Амаль 3 стагоддзі вёўся пошук формулы для рашэння ўраўненняў вышэйшай ступені. У 17 ст. ўпершыню выказана А.Жырарам, а ў канцы 18 ст. К.Гаўсам даказана асн. тэарэма алгебры аб існаванні камплекснага кораня для адвольных АУ з камплекснымі каэфіцыентамі. У 1824 Н.Абель даказаў, што ўраўненне вышэй 4-й ступені ў агульным выпадку ў радыкалах невырашальнае, а ў 1830 Э.Галуа знайшоў крытэрый вырашальнасці ў радыкалах АУ. Разам з тэарэмай АУ з адным невядомым разглядаліся сістэмы АУ з многімі невядомымі, у прыватнасці сістэмы лінейных ураўненняў, у сувязі з чым узніклі паняцці матрыцы і дэтэрмінанта. З сярэдзіны 19 ст. даследаванні ў алгебры паступова пераносяцца з тэорыі АУ да вывучэння адвольных алг. аперацый. Абстрактнае паняцце алг. аперацыі ўзнікла ў сярэдзіне 19 ст. ў сувязі з даследаваннем прыроды камплексных лікаў, а таксама ў выніку з’яўлення прыкладаў алг. аперацый над элементамі зусім інш. прыроды, чым лікі, — складанне і множанне матрыц і інш.

У пачатку 20 ст. алгебра стала разглядацца як агульная тэорыя алг. аперацый на аснове аксіяматычнага метаду (сфарміравалася пад уплывам прац Ц.Гільберта, Э.Штэйніца, Э.Арціна, Э.Нётэр і інш.). Сучасная алгебра вывучае мноствы адвольнай прыроды з зададзенымі на іх алг. аперацыямі (г.зн. алгебра ці універсальныя алгебра). Доўгі час вывучаліся толькі некалькі тыпаў універсальных алгебраў — групы, кольцы, лінейныя прасторы. Пазней пачалося вывучэнне абагульненняў паняцця групы — паўгрупы, квазігрупы і лупы. Разам з асацыятыўнымі кольцамі і алгебрай пачалі вывучацца і неасацыятыўныя кольцы і алгебра. Асацыятыўна-камутатыўныя кольцы і палі з’яўляюцца асн. аб’ектам вывучэння камутатыўнай алгебры, з якой цесна звязана алгебраічная геаметрыя. Важным тыпам алгебры з’яўляюцца структуры. Лінейныя прасторы, модулі, а таксама іх лінейныя пераўтварэнні і сумежныя пытанні вывучае лінейная алгебра, часткай якой з’яўляюцца тэорыі лінейных ураўненняў і матрыц. Да лінейнай алгебры прымыкае полілінейная алгебра. Першыя працы па агульнай тэорыі адвольных універсальных алгебраў належаць Г.Біркгафу (1830-я г.). У тыя ж гады А.І.Мальцаў і А.Тарскі заклалі асновы тэорыі мадэляў — мностваў з зададзенымі на іх адносінамі. У выніку цеснага збліжэння тэорыі універсальных алгебраў з тэорыяй мадэляў узнік новы раздзел алгебры, сумежны з алгебрай і матэматычнай логікай, — тэорыя алг. сістэм, якая вывучае мноствы з зададзенымі на іх алг. аперацыямі і адносінамі (гл. Алгебра логікі). Дысцыпліны, сумежныя з алгебрай і інш. часткамі матэматыкі, вызначаюцца ўнясеннем ва універсальныя алгебры дадатковых структур, узгодненых з алг. аперацыямі і адносінамі: тапалагічная алгебра, у т. л. тапалагічныя групы і групы Лі, тэорыя ўнармаваных кольцаў, дыферэнцыяльная алгебра, тэорыі розных упарадкаваных алгебраў. Да сярэдзіны 1950-х г. сфарміравалася гамалагічная алгебра, карані якой ляжаць у алгебры і тапалогіі.

Алг. паняцці і метады выкарыстоўваюцца ў геаметрыі, тэорыі лікаў, функцыян. аналізе, тэорыі дыферэнцыяльных ураўненняў, метадах вылічэнняў і інш. Алгебра мае вял. дачыненне да фізікі (выяўленні груп у квантавай фізіцы), крышталяграфіі (дыскрэтныя групы), кібернетыкі (тэорыі аўтаматаў і кадзіравання), матэм. эканомікі (лінейныя няроўнасці) і інш. Сістэм. даследаванні па алгебры на Беларусі пачалі Дз.А.Супруненка (1945) і С.А.Чуніхін (1953). Вядуцца пераважна ў Ін-це матэматыкі АН Беларусі, БДУ, Гомельскім ун-це ў школах У.П.Платонава, А.Я.Залескага, Л.А.Шамяткова.

Літ.:

Математика, её содержание, методы и значение. Т. 1—3. М., 1956;

Бурбаки Н. Очерки по истории математики: Пер. с фр. М., 1963.

Р.Т.Вальвачоў.

т. 1, с. 233

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАЛО́ГІЯ

(ад геа... + ...логія),

навука аб саставе, будове і гісторыі развіцця зямной кары і Зямлі, заканамернасцях утварэння і пашырэння горных парод, мінералаў, падземных вод і радовішчаў карысных выкапняў. Забяспечвае выяўленне і ацэнку мінер.-сыравінных рэсурсаў. Мае вял. гнасеалагічнае значэнне, паколькі аб’ект яе вывучэння — Зямля. Геалогія — адна з фундаментальных навук аб прыродзе Зямлі і Сусвету. Вылучаюць 3 кірункі геалогіі: апісальны (апісанне мінералаў, горных парод, геал. цел і інш.), дынамічны (вывучэнне геал. працэсаў і іх эвалюцыі), гістарычны (гісторыка-геал. рэканструкцыі). Геалогія падзяляецца на мінералогію, петраграфію, літалогію, стратыграфію, палеанталогію, палеагеаграфію, тэктоніку, гідрагеалогію, таксама геалогію антрапагену (гл. Чацвярцічная геалогія), інж., рэгіянальную, марскую, геалогію карысных выкапняў і інш.

Працэсы геал. мінулага даследуюцца на падставе вывучэння сучасных працэсаў з улікам эвалюцыі Зямлі (прынцып актуалізму). Геалогія карыстаецца метадамі назірання, картаграфавання, свідравання, комплексам геафіз. метадаў, касмічнай і аэрафотаздымкі, аптычнымі, электронна-мікраскапічнымі, рэнтгенаўскімі, спектральнымі, хім., ізатопнымі і інш. Цесна звязана з геагр. навукамі — геамарфалогіяй, фіз. геаграфіяй, кліматалогіяй, гідралогіяй, геадэзіяй, а таксама з навукамі, што вылучыліся з яе — геафізікай і геахіміяй. Геалогія шырока выкарыстоўвае дасягненні фізікі, хіміі, біялогіі, матэматыкі і інш. Геалогія ўзнікла ў працэсе практычнай дзейнасці чалавека, які з глыбокай старажытнасці выкарыстоўваў у побыце каменне, ваду падземных крыніц, руды. Першыя звесткі пра мінералы, горныя пароды, падземныя воды і пошукі карысных выкапняў ёсць у пісьмовых помніках Стараж. Егіпта, стараж. рукапісах Кітая, працах ант. вучоных Грэцыі і Рыма: Піфагора, Герадота, Арыстоцеля, Плінія Старэйшага. Перыяд да 18 ст. адметны назапашваннем разнастайных фактаў аб саставе горных парод і мінералаў, падземных вод, геал. з’явах. У 18 — 1-й пал. ст. М.В.Ламаносаў (Расія), Ж.Кюўе, Л.Элі дэ Бамон, А.Браньяр (Францыя), Л.Бух, А.Г.Вернер (Германія), У.Сміт, А.Седжвік, Р.І.Мурчысан, Ч.Лаель, Дж.Гетан (Вялікабрытанія), А.Грэслі (Швейцарыя) сістэматызавалі разрозненыя геал. звесткі, прапанавалі шэраг асноватворных уяўленняў геалогіі, заклалі фундамент геал. навукі, якая аформілася ў 2-й пал. 19 — пач. 20 ст.

Тэарэт. асновы сучаснай геалогіі складаюць вучэнні аб глабальнай тэктоніцы пліт (гл. Тэктанічныя гіпотэзы), платформах і геасінкліналях, фацыях і фармацыях, літагенезе, магматызме, рудаўтварэнні, падземных водах і інш. Уклад у развіццё геалогіі зрабілі А.Дз.Архангельскі, М.Бертран, С.М.Бубнаў, А.Вегенер, У.І.Вярнадскі, І.М.Губкін, Дж.Дана, А.М.Заварыцкі, Э.Зюс, У.А.Кавалеўскі, А.П.Карпінскі, Ф.Ю.Левінсон-Лесінг, Г.Ф.Мірчынк, Дз.В.Наліўкін, У.А.Обручаў, Э.Ог, А.П.Паўлаў, Ф.Дж.Петыджан, М.М.Страхаў, Я.С.Фёдараў, А.Я.Ферсман, В.Я.Хаін, Дж.Хол, М.С.Шацкі, Г.Штыле, А.Л.Яншын і інш.

На Беларусі геал. вывучэнне тэрыторыі вядзецца з пач. 19 ст.: рабіліся маршрутныя апісанні, даследаваліся асобныя радовішчы карысных выкапняў (А.Э.Гедройц, Р.П.Гельмерсен, М.І.Крыштафовіч, Г.Б.Місуна, В.М.Севяргін, П.А.Туткоўскі і інш.). Планамернае вывучэнне геал. будовы пачалося з 1927, калі быў арганізаваны геал. ін-т у складзе Інбелкульта. У 1937 створана Геал. ўпраўленне для кіравання геолага-здымачнымі і геолага-пошукавымі работамі. Пасля Вял. Айч. вайны праведзена сярэднемаштабная, часткова дэталёвая геал. і гідрагеал. здымка, выконваліся геафіз. даследаванні, пошукава-разведачныя работы, накіраваныя на выяўленне радовішчаў карысных выкапняў. Высветлена геал. будова і гісторыя геал. развіцця, тэктоніка тэр. Беларусі, дэталёва даследаваны петраграфія і мінералогія крышт. фундамента, літалогія і геахімія платформавага чахла. Разведаны запасы калійных і каменнай солей, прэсных і мінер. падземных вод і ёдабромных расолаў, сыравіны для вытв-сці буд. матэрыялаў. Выяўлены радовішчы нафты, бурага вугалю, гаручых сланцаў, жал. руд, фасфарытаў, даўсаніту, сіліцытаў, рэдкіх металаў і інш. Вядуцца значныя інж.-геал. і геаэкалагічныя даследаванні. Вялікі ўклад у вывучэнне нетраў зрабілі: арганізатар геал. службы на Беларусі М.Ф.Бліадухо, бел. навук. школы, заснаваныя Г.І.Гарэцкім (геалогія антрапагену), А.С.Махначом (літалогія і геахімія даантрапагенных адкладаў), К.І.Лукашовым (геахімія навакольнага асяроддзя), Р.Г.Гарэцкім (геатэктоніка), Г.В.Багамолавым (гідрагеалогія), А.В.Мацвеевым (вывучэнне сучасных геал. працэсаў і геамарфалогія), Э.А.Ляўковым (неагеадынаміка), а таксама У.А.Багіна, Г.І.Ількевіч, П.А.Леановіч, В.І.Пасюкевіч, П.З.Хоміч і інш. Вытворчыя і н.-д. геал. работы праводзяць ВА «Беларусьгеалогія» і «Беларусьнафта», Геолагаразведачны беларускі навукова-даследчы інстытут, Інстытут геалагічных навук (ІГН) Нац. АН Беларусі, Беларускае дзяржаўнае навукова-даследчае геалагічнае прадпрыемства (Белгеа), Бел. дзярж. ін-т інж. вышуканняў («Геасервіс») і інш. Кадры па геалогіі рыхтуюць БДУ і Гомельскі дзярж. ун-т. Геал. даследаванні і іх каардынацыю ажыццяўляюць таксама Геалагічны міжнародны кангрэс, Міжнар. саюз геал. навук, Беларускае геалагічнае таварыства, Бел. нац. камітэт геолагаў. Асн. перыяд. выданні: «Літасфера», «Даклады АН Беларусі», «Весці АН Беларусі» : інш.

Літ.:

Аллисон А., Палмер Д. Геология: Наука о вечно меняющейся Земле: Пер. с англ. М., 1984;

Уотсон Дж. Геология и человек: Введение в прикладную геологию: Пер. с англ. Л., 1986;

Махнач А.С., Вазнячук Л.М. Геалагічнае мінулае Беларусі. Мн., 1959;

Геология СССР. Т. 3. Белорусская ССР. М., 1971;

История геологических наук в Белорусской ССР. Мн., 1978;

Геология Белоруссии: Достижения и пробл.: Сб науч. тр. Мн., 1988;

Гарэцкі Р.Г. і інш. Праблемы вывучэння літасферы Беларусі // Літасфера. 1994. № 1;

Гарецкий Р.Г., Каратаев Г.И. Основные проблемы экологической геологии // Там жа. 1995. №2.

А.А.Махнач.

т. 5, с. 118

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)