НЕРВО́ВАЯ СІСТЭ́МА,

морфафункцыянальная сукупнасць асобных нейронаў і інш. структур нервовай тканкі жывёл і чалавека, якая аб’ядноўвае дзейнасць усіх органаў і сістэм арганізма ў яго пастаянным узаемадзеянні з навакольным асяроддзем. Успрымае знешнія і ўнутр. раздражняльнікі, аналізуе і перапрацоўвае атрыманую інфармацыю, захоўвае сляды былой актыўнасці (памяць) і адпаведна рэгулюе і каардынуе функцыі арганізма. Аснова дзейнасці — рэфлекс, звязаны з распаўсюджваннем узбуджэння і тармажэння па рэфлекторных дугах. У ходзе эвалюцыі жывёл паступовае ўскладненне Н.с. адбывалася з адначасовым ускладненнем іх паводзін.

У прасцейшых жывёл Н.с. адсутнічае. Сеткападобная, або дыфузная, Н.с. паявілася ў кішачнаполасцевых. Яна хутка праводзіць узбуджэнне з месца раздражнення па ўсіх напрамках, але не дыферэнцыруе рэакцыі. Далейшае ўскладненне Н.с. ішло паралельна з развіццём органаў руху і выяўлялася ў адасабленні нейронаў і паглыбленні іх у цела. Напр., у кішачнаполасцевых, якія жывуць свабодна (медузы), нейроны аб’яднаны ў гангліі і ўтвараюць дыфузна-вузлавую Н.с. Паявіліся спецыялізаваныя рэцэптары, двухполюсныя нейроны (маюць аксоны і дэндрыты), тыпічныя сінапсы, нейраглія. Цэнтралізацыя Н.с. прывяла да вузлавога тыпу арганізацыі (ігласкурыя, малюскі, сучасныя кольчатыя чэрві, членістаногія). У актыўных форм пярэдні канец цела пры перамяшчэнні першым сустракаецца з рознымі раздражняльнікамі, таму на ім развіліся дыстантныя рэцэптары, якія ўспрымаюць святло, гук, пах (паяўленне пачуццяў органаў). Адпаведныя гангліі ў галаўной ч. тулава развіліся больш, падпарадкавалі сабе астатнія і ўтварылі галаўны мозг. Дыферэнцыяцыя крывяноснай, палавой, стрававальнай і інш. сістэм суправаджалася ўскладненнем узаемадзеяння паміж імі і Н.с.

Найб. развіцця Н.с. дасягнула ў млекакормячых, асабліва ў чалавека, пераважна за кошт ускладнення будовы паўшар’яў і кары гал. мозга. Развіццё і дыферэнцыяцыя структур Н.с. ў высокаарганізаваных жывёл абумовілі яе падзел на цэнтральную нервовую сістэму і перыферычную нерв. сістэму.

Літ.:

Никитенко М.Ф. Эволюция и мозг. Мн., 1969;

Сепп Е.К. История развития нервной системы позвоночных. 2 изд. М., 1959;

Куффлер С.В., Николс Дж. От нейрона к мозгу: Пер. с англ. М., 1979.

А.С.Леанцюк.

Нервовая сістэма: 1 — галаўны мозг; 2 — спінны мозг; 3 — вегетатыўныя гангліі; 4 — перыферычныя нервы.

т. 11, с. 291

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЎРАПАТАЛО́ГІЯ (ад неўра... + паталогія),

неўралогія клінічная, раздзел клінічнай медыцыны, які вывучае прычыны ўзнікнення, механізмы развіцця, дыягностыку, лячэнне і прафілактыку нервовых хвароб.

Захворванні нерв. сістэмы апісаны ўжо ў працах Гіпакрата, Цэльса і інш. У самаст. галіну медыцыны вылучылася ў сярэдзіне 19 ст., у Расіі — з прац А.Я.Кажэўнікава. які ў 1869 арганізаваў адну з першых у свеце клінік, у 1870 — першую ў Расіі кафедру нерв. хвароб.

На Беларусі заснавальнік Н. — М.Б.Кроль. Па яго ініцыятыве ў 1923 створана кафедра нерв. хвароб мед. ф-та БДУ, у 1924 — ін-т фіз. метадаў лячэння (з 1949 Неўралогіі, нейрахірургіі і фізіятэрапіі НДІ). Кіраўнікі школы бел. неўрапатолагаў (неўролагаў) — Д.А.Маркаў, І.П.Антонаў. Навук. даследаванні праводзяцца па пытаннях нейраінфекцый, эпілепсіі, дэміэлізуючых захворванняў нерв. сістэмы, сасудзістых пашкоджанняў галаўнога і спіннога мозга, грыпу і паразітарных захворванняў нерв. сістэмы, клінічных праяў паяснічнага астэахандрозу, выкарыстання выліч. тэхнікі ў Н. Вядучыя спецыялісты па Н.: В.І.Вацякоў, Я.Я.Гардзееў, С.Ё.Гінзбург, Л.С.Гіткіна, А.Л.Леановіч, М.С.Місюк, Г.К.Недзьведзь, І.І.Протас, І.Л.Саснавік, М.Ф.Філіповіч і інш. З 1957 развіваецца дзіцячая Н. (у 1980 адкрыта кафедра пры Бел. НДІ ўдасканалення ўрачоў). Вывучаюцца асаблівасці клінікі і цячэння захворванняў нерв. сістэмы ў дзяцей: неўралагічныя расстройствы пры рэўматызме і дыфузных хваробах злучальнай тканкі, гіперкінезы, эпілепсія і прыпадкі, дзіцячыя цэрэбральныя паралічы, спадчынныя хваробы, паражэнні нерв. сістэмы ў нованароджаных (Г.Г.Шанько і інш.). Працуюць (2000): 7 клінік нерв. хвароб у Мінскім, Гродзенскім, Гомельскім мед. ін-тах, Віцебскім мед. ун-це, Бел. НДІ удасканалення ўрачоў (2), Бел. НДІ неўралогіі, нейрахірургіі і фізіятэрапіі.

Літ.:

Антонов И.П., Шанько Г.Г. К истории развития невропатологии в Белоруссии за годы Советской власти // Вопросы истории медииины и здравоохранения. Мн., 1968;

Дривотинов Б.В. Неврологические нарушения при поясничном остеохондрозе. Мн., 1979;

Марков Д.А., Злотн и к Э.И., Гиткина Л.С. Инфаркт мозга. Мн., 1973;

Шанько Г.Г. Эпилепсия у детей: классификация, диагностика, лечение. Мн., 1997;

Энциклопедия детского невролога. Мн., 1993.

Г.Г.Шанько.

т. 11, с. 302

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЕ ДЗЕ́ЯННЕ ІАНІЗАВА́ЛЬНЫХ ВЫПРАМЯНЕ́ННЯЎ,

біяхімічныя, фізіял., генет. і інш. змяненні, што ўзнікаюць у жывых клетках і арганізмах пад уздзеяннем іанізавальных выпрамяненняў. Дзеянне на арганізм залежыць ад віду і дозы выпрамянення, умоў апрамянення і размеркавання паглынутай дозы ў арганізме, фактару часу апрамянення, выбіральнага пашкоджання крытычных органаў, а таксама ад функцыян. стану арганізма перад апрамяненнем. Асн. вынікам узаемадзеяння іанізавальных выпрамяненняў са структурнымі элементамі клетак жывых арганізмаў з’яўляецца іанізацыя, якая прыводзіць да індуцыравання розных хім. і біял. рэакцый ва ўсіх тканкавых сістэмах арганізма. Радыебіял. працэсы, што ідуць на ўзроўні клеткі, ідэнтычныя для чалавека, жывёл і раслін. Адрозненне паміж імі выяўляецца на ўзроўні арганізма. Вылучаюць 2 асн. класы радыебіял. эфектаў: саматычныя (да іх належаць рэакцыі элементаў біясістэмы, што ідуць на працягу ўсяго антагенезу) і генет. (змены, якія рэалізуюцца ў наступных пакаленнях). Да саматычных належаць: радыяцыйная стымуляцыя, радыяцыйныя парушэнні, прамянёвая хвароба, паскарэнне тэмпаў старэння, скарачэнне працягласці жыцця, гібель арганізма. Генетычныя (ці мутагенныя) эфекты іанізавальных выпрамяненняў найбольш небяспечныя. Уздзейнічаючы на ДНК саматычных і генератыўных клетак, іанізавальныя выпрамяненні могуць выклікаць мутацыі, злаякасныя перараджэнні клетак. Ступень біялагічнага дзеяння іанізавальных выпрамяненняў залежыць і ад радыеадчувальнасці: маладыя арганізмы больш адчувальныя да выпрамяненняў, паўлятальная доза (D50) для большасці млекакормячых не перавышае 4—5, для некаторых раслін дасягае 30—40 і больш за сотню грэй. У арганізмах вылучаюцца крытычныя органы, якія першыя рэагуюць на іанізавальныя выпрамяненні: у чалавека і жывёл гэта касцявы мозг, эпітэлій страўнікава-кішачнага тракту, эндатэлій сасудаў, хрусталік вока, палавыя залозы; у вышэйшых раслін — утваральныя тканкі (мерыстэмы). Асобнае месца пры ўздзеянні на біясістэмы належыць малым дозам іанізавальных выпрамяненняў, якія пасля аварыі на Чарнобыльскай АЭС ператварыліся ў паўсядзённы фактар асяроддзя на забруджаных радыенуклідамі тэрыторыях Беларусі, Украіны, Расіі. Рэгулёўнае біялагічнае дзеянне іанізавальных выпрамяненняў шырока выкарыстоўваецца ў медыцыне (рэнтгенадыягностыка, радыетэрапія, выкарыстанне ізатопных індыкатараў і інш.), сельскай гаспадарцы (радыяцыйны мутагенез і інш.).

Літ.:

Кудряшов Ю.Б., Беренфильд Б.С. Основы радиационной биофизики. М., 1982;

Кузин А.М. Структурнометаболическая теория в радиобиологии. М., 1986;

Ярмоненко С.П. Радиобиология человека и животных. 3 изд. М., 1988;

Гродзинский Д.М. Радиобиология растений. Киев, 1989;

Гудков И.Н. Основы общей и сельскохозяйственной радиобиологии. Киев, 1991.

А.П.Амвросьеў.

т. 3, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРЫБНЫ́Я ХВАРО́БЫ РАСЛІ́Н,

мікозы, інфекцыйныя захворванні, якія выклікаюцца фітапатагеннымі грыбамі (паразітамі і паўпаразітамі). Пашкоджваюць вышэйшыя расліны, імхі, водарасці. Найб. страты прычыняюць с.-г. раслінам. Пад уздзеяннем грыбоў — узбуджальнікаў хваробы — у раслінах узнікаюць паталагічныя працэсы, якія суправаджаюцца зменай структуры і фізіял. функцый інфіцыраваных частак або цэлай расліны. Вонкавыя прыкметы грыбных хвароб раслін: завяданне раслін, гнілі, некрозы, плямістасці, пустулы, налёты, разбурэнне асобных органаў, муміфікацыі, пухліны і дэфармацыі. Грыбныя хваробы раслін перадаюцца насеннем, клубнямі, цыбулінамі, каранямі, чаранкамі, саджанцамі і інш. часткамі хворых раслін. Патагенныя грыбы могуць пранікаць у тканкі раслін праз вусцейкі (мілдзью вінаграду), вадзяныя поры, клеткі эпідэрмісу і кутыкулу (кіла капусты, рак бульбы), трэшчыны і раны, што ўзнікаюць ад граду, сонечных апёкаў (чорны рак яблыні).

Паводле спосабу паразітызму фітапатагенныя грыбы ўмоўна падзяляюць на біятрофы (экалагічна аблігатныя паразіты раслін, якія ўвесь інфекц. перыяд узаемадзейнічаюць з жывымі клеткамі і тканкамі расліны-гаспадара) і некратрофы (факультатыўныя паразіты, што выкарыстоўваюць рэчывы адмерлых тканак гаспадара). Пашырэнне патагенаў у тканках гаспадара можа быць лакальнае і сістэмнае (дыфузнае), напр., ва ўзбуджальнікаў галаўні злакаў, жоўтай іржы пшаніцы, несапраўднай мучністай расы цыбулі. Характар і ступень праяўлення ўстойлівасці расліны да патагеннага грыба залежыць ад вірулентнасці патагена, наяўнасці генаў устойлівасці, фізіял. стану расліны, глебава-кліматычных умоў яго вырошчвання.

У кліматычных умовах Беларусі, аптымальных для развіцця фітапатагенных грыбоў, найб. страты грыбныя хваробы раслін прычыняюць збожжавым культурам, часам знішчаюць да 20% ураджаю. Пры адсутнасці ахоўных мерапрыемстваў да 50% бульбы гіне ад фітафтарозу, 40% ад ранняй сухой плямістасці. Пашыраны мучністая раса (на злакавых культурах, парэчках, агрэсце, ружах, флоксах і інш.), ліставая і сцябловая іржа, спарыння (на жыце), пыльная і цвёрдая галаўня, гельмінтаспарыёзныя плямістасці (на ячмені), фітафтароз, бурая гніль (на бульбе, памідорах) і інш. Меры барацьбы: выкарыстанне агратэхн. прыёмаў для знішчэння крыніц інфекцыі, каранцінныя мерапрыемствы, вырошчванне ўстойлівых сартоў, хім. ахова.

Літ.:

Тарр С. Основы патологии растений. Пер. с англ. М., 1975;

Жизнь растений. Т. 2. М., 1976;

Проблемы иммунитета сельскохозяйственных растений к болезням. Мн., 1988.

В.В.Карпук.

т. 5, с. 471

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБМЕ́Н РЭ́ЧЫВАЎ, метабалізм,

сукупнасць хім. ператварэнняў рэчываў у жывых арганізмах, якія забяспечваюць іх развіццё, жыццядзейнасць, самаўзнаўленне, сувязь з навакольным асяроддзем і адаптацыю да змен у ім. Аснову абмену рэчываў складаюць непарыўна звязаныя і ўзаемаабумоўленыя працэсы анабалізму, катабалізму і абмену энергіі. У сукупнасці яны забяспечваюць структурную і функцыян. цэласнасць арганізмаў, ляжаць у аснове іх гамеастазу. У планетарным маштабе абмен рэчываў складае важную частку кругавароту рэчываў у прыродзе. Для кожнага віду жывых арганізмаў характэрны свой, генетычна замацаваны ўзровень абмену рэчываў, які залежыць ад іх спадчынных уласцівасцяў, месца ў эвалюцыйным радзе, узросту, полу, умоў існавання і інш. фактараў (напр., абмен рэчываў ніжэйшы ў раслін і халаднакроўных жывёл, вышэйшы ў цеплакроўных, слабы ў час спячкі, анабіёзу, высокі ў перыяд размнажэння і г.д.). Пры вял. і разнастайным асартыменце арган. рэчываў, якія ўцягваюцца ў абмен, агульная яго схема ў розных арганізмаў падобная, вызначаецца ўпарадкаванасцю і падабенствам паслядоўнасці біяхім. ператварэнняў, што адбываюцца пры абавязковым удзеле ферментаў. Дзякуючы абмену рэчываў з пажыўных рэчываў утвараюцца характэрныя для дадзенага арганізма злучэнні, якія выкарыстоўваюцца як буд. ці энергет. матэрыял, пастаянна і няспынна абнаўляюцца органы і тканкі без прынцыповай змены іх хім. саставу. Асн. тыпы злучэнняў, якія ўдзельнічаюць у абмене рэчываў у арганізме, — бялкі, тлушчы, вугляводы, мінеральныя рэчывы. Іх навук. даследаванне вылучаецца ў самаст. раздзелы біяхіміі.

Ператварэнні рэчываў ад моманту іх паступлення ў арганізм да ўтварэння канчатковых прадуктаў распаду складаюць сутнасць т.зв. прамежкавага абмену рэчываў. Асн. яго этапы: ператраўленне і ўсмоктванне пажыўных рэчываў у страўнікава-кішачным тракце; дастаўка атрыманых рэчываў да розных органаў і тканак; іх перабудова, раскладанне і выкарыстанне для біясінтэзу спецыфічных рэчываў, клетак і тканак; раскладанне такіх рэчываў з утварэннем прамежкавых злучэнняў і канчатковых прадуктаў абмену; выдаленне апошніх з арганізма. Цэнтр. месца ў абмене рэчываў належыць цыклу трыкарбонавых кіслот, у якім перакрыжоўваюцца шляхі бялковага, вугляводнага, тлушчавага абмену (гл. схему). Найважн. прамежкавы прадукт абмену рэчываў — ацэтылкаэнзім A, які ўдзельнічае ва ўсіх працэсах анабалізму і катабалізму і аб’ядноўвае іх; асн. канчатковыя прадукты — H2O, CO3, NH3, мачавіна і інш. У рэгуляванні працэсаў абмену рэчываў гал. месца займаюць змены актыўнасці і інтэнсіўнасці сінтэзу клетак, абмен можа самарэгулявацца па прынцыпе адваротнай сувязі. Вял. значэнне ў рэгуляванні абмену рэчываў маюць біял. мембраны. У высокаарганізаваных жывёл рэгулюецца і каардынуецца нейрагумаральнай сістэмай пры ўдзеле біял. актыўных рэчываў (вітаміны, гармоны, медыятары і інш.). Разбалансаванне абмену рэчываў з’яўляецца прычынай або вынікам узнікнення разнастайных хвароб, фіксацыя змен у ім — важны дыягнастычны сродак. Гл. таксама Бялковы абмен, Вугляводны абмен, Тлушчавы абмен, Мінеральны абмен.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Страйер Л. Биохимия: Пер. с англ. Т. 1—3. М., 1984—85.

Я.В.Малашэвіч.

Схема абмену рэчываў.

т. 1, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)