Існаваў у 1936—54 пры Гомельскім пед. ін-це. Рыхтаваў настаўнікаў 5—7-х класаў агульнаадук. школы. Тэрмін навучання 2 гады. Меў аддзяленні: фіз.-матэм., прыродазнаўча-геагр., рус. і бел. мовы і л-ры, гіст., завочнае і падрыхтоўчае (з 1944). У 1941 эвакуіраваны ў г. Амутнінск Кіраўскай вобл. Аднавіў работу ў Гомелі ў 1944. У 1954 аб’яднаны з Гомельскім пед. ін-там.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЛО́СНЫЯ ГУ́КІ,
гукі мовы, пры ўтварэнні якіх паветра свабодна праходзіць праз поласць рота. У акустычных адносінах гэта муз. тоны з нязначнымі шумамі. Кожны галосны гук у залежнасці ад формы, набытай поласцю рота і поласцю глоткі (рэзанатары) пры яго вымаўленні, мае пэўную колькасць уласных тонаў, якія наз. характэрнымі тонамі галоснага ці яго фармантамі. Сукупнасць тонаў утварае тэмбр; ім галосныя адрозніваюцца адзін ад аднаго. Агульныя анатама-фізіял. ўмовы ўтварэння галосных гукаў: адсутнасць у маўленчым апараце якіх-н. значных перашкод, што маглі б спрыяць узнікненню шуму; слабая паветраная плынь; напружанасць усіх органаў маўлення. За найб. зручную навук. класіфікацыю прынята лічыць анатама-фізіял., ці генетычную, заснаваную на стане артыкуляцыйных органаў. Асн. ролю пры ўтварэнні галосных гукаў выконваюць губы, язык, мяккае паднябенне.
Паводле актыўнасці-пасіўнасці губ бел. галосныя гукі падзяляюцца на губныя, ці лабіялізаваныя («о», «у»), і негубныя, ці нелабіялізаваныя («і», «ы», «э», «а»). У залежнасці ад стану языка па гарызанталі — на 3 групы: пярэдняга рада («і», «э»), сярэдняга, ці мяшанага, рада («ы», «а»), задняга рада («у», «о»). Паводле руху языка па вертыкалі — на ступені пад’ёму: верхняга пад’ёму, ці закрытыя, вузкія («і», «ы», «у»); сярэдняга пад’ёму («о», «э»); ніжняга пад’ёму, ці адкрытыя, шырокія («а»). У залежнасці ад стану мяккага паднябення — на ротавыя, ці неназалізаваныя (усе галосныя гукі сучаснай бел. мовы), і насавыя, ці назалізаваныя (Ѫ, Ѧ у стараслав., ą, ę; у польск., ɑ̃, ɛ̃ у франц. мове).
Літ.:
Камароўскі Я.М., Сямешка Л.І. Сучасная беларуская мова: Фанетыка і фаналогія. Арфаэпія. Графіка. Арфаграфія. Мн., 1985.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АПРАМЯНЕ́ННЕ АРГАНІ́ЗМА,
прыроднае або штучнае ўздзеянне выпрамяненняў на жывы арганізм. У натуральных умовах жывыя істоты апраменьваюцца інфрачырвоным (цеплавое апрамяненне), бачным і ультрафіялетавым сонечным святлом, а таксама касм. прамянямі і іанізоўным выпрамяненнем зямнога паходжання (гл.Фон радыеактыўны). Пры штучным апрамяненні арганізма часцей скарыстоўваюць іанізавальныя, ультрафіялетавыя, ультравысокачастотныя выпрамяненні. Адрозніваюць апрамяненне арганізма татальнае (усяго цела) і лакальнае (частковае), вострае (за кароткі прамежак часу) і хранічнае, або пралангаванае (працяглае), аднаразовае і фракцыянаванае (сумарная доза паступае часткамі, з рознымі прамежкамі часу), вонкавае і ўнутранае (ад радыеактыўных рэчываў, што трапілі ў арганізм). Па даных Навук.к-таААН па дзеянні атамнай радыяцыі (НКДАР ААН; 1988) сярэднія дозавыя нагрузкі насельніцтва Зямлі ў пераліку на гадавыя эфектыўныя эквівалентныя дозы апрамянення складаюць у мілізівертах (мЗв): ад натуральных крыніц радыяцыі зямнога паходжання прыўнутр. апрамяненні 1,325, пры вонкавым 0,35; касмічнага паходжання 0,3 і 0,015 адпаведна; ад крыніц, якія выкарыстоўваюцца ў медыцыне, 0,4; ад радыеактыўных ападкаў 0,02; ад атамнай энергетыкі 0,001. На тэр., што пацярпелі ад буйных радыяц. катастроф (напр., Кыштымская 1957, Расія; Чарнобыльская 1986, і інш.), пасляаварыйныя дозавыя нагрузкі на арганізм значна адрозніваюцца ад сярэдніх. Напр., праз 5 гадоў пасля Чарнобыльскай катастрофы на Гомельшчыне гадавая эфектыўная эквівалентная доза апрамянення складала (мЗв): у Брагіне 2,5, Ветцы 3,1, Буда-Кашалёве 1,3, Карме 2. У «Каталог дозаў апрамянення насельніцтва Рэспублікі Беларусь» (1992) занесена 3326 нас. пунктаў, дзе шчыльнасць забруджвання цэзіем-137 складала 15—40 Кі/км² і сумарныя гадавыя эквівалентныя дозы да 2—3 мЗв. Гл. таксама Біялагічнае дзеянне іанізавальных выпрамяненняў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЎТАМАТЫЗА́ЦЫЯ ПРАЕКТАВА́ННЯ,
выкарыстанне ЭВМ і інш. сродкаў аўтаматызацыі, аб’яднаных у сістэму класа «чалавек—машына» для праектавання машын, абсталявання, збудаванняў і інш. аб’ектаў.
Аўтаматызацыя праектавання дае магчымасць павялічыць дакладнасць разлікаў і канструктарскай дакументацыі, выбіраць варыянты для рэалізацыі на аснове матэм. аналізу ўсіх або большасці з іх, скараціць тэрміны праектавання і інш. Метады і сродкі аўтаматызацыі праектавання залежаць ад характару і прызначэння аб’екта праектавання. Найб. істотныя вынікі атрымліваюцца пры аўтаматызацыі праектавання складаных тэхн. сістэм і збудаванняў, пры падрыхтоўцы праграмна-кіравальнага выканаўчага абсталявання. З дапамогай графапабудавальнікаў, друкавальных прыстасаванняў і інш. сродкаў вываду інфармацыі вынікі аўтаматызацыі праектавання аўтаматычна выдаюцца ў выглядзе схем, чарцяжоў ці графікаў (табліц) на аркушах паперы чарцёжных фарматаў, магнітнай стужцы, мікрафільмах і інш. або на спец. экране. Пры аўтаматызацыі праектавання машын і механізмаў па зыходных даных вызначаюць найлепшы варыянт кампаноўкі вырабу, выбіраюць і разлічваюць канструкцыю і яе асобныя вузлы, аптымізуюць допускі і пасадкі, вызначаюць форму спалучаных паверхняў, чысціню іх апрацоўкі і інш.
Навукова-тэхн. распрацоўкі сістэм аўтаматызацыі праектавання вядуцца ў Ін-це тэхн. кібернетыкі АН Беларусі з 1960-х г.: сфармуляваны асновы аўтаматызацыі праектавання ў машынабудаванні; створаны першыя алгарытмы, праграмы і тэхн. сродкі канструявання і тэхнал. падрыхтоўкі вытв-сці машын і абсталявання; распрацаваны «аўтаматычны чарцёжнік» дае магчымасць з вял. дакладнасцю рабіць чарцяжы вырабаў складанай канфігурацыі (карабельных вінтоў, крыла самалёта, лапатак рабочых колаў турбін і інш.).
Літ.:
Системы автоматизированного проектирования технологических процессов, приспособлений и режущих инструментов. М., 1988;
Ракович А.Г. Основы автоматизации проектирования технологических приспособлений. Мн., 1985.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЯЛІ́КАЯ ІНТЭГРА́ЛЬНАЯ СХЕ́МА,
інтэгральная схема з вялікай колькасцю схемных элементаў (высокай ступені інтэграцыі); асн. элементная база ЭВМ і радыёэлектронных сродкаў. Аналагавыя вялікія інтэгральныя схемы маюць да 800, лічбавыя — да некалькіх дзесяткаў тысяч элементаў. Звышвялікая інтэгральная схема мае на парадак большую ступень інтэграцыі. Вялікія інтэгральныя схемы забяспечваюць надзейнасць радыёэлектроннай тэхнікі, яе малыя габарыты і масу, нізкую спажываную магутнасць.
Асаблівасць вялікіх інтэгральных схем — малыя памеры яе элементаў і міжэлементных злучэнняў (да 1,2 мкм пры выкарыстанні фоталітаграфіі і менш за 1 мкм пры рэнтгенаўскай і электроннай літаграфіі); скарачэнне колькасці знешніх вывадаў для забеспячэння хуткадзеяння, напр. у аднакрышталёвых ЭВМ. Адрозніваюць вялікія інтэгральныя схемы цвердацельныя (маналітныя; бываюць на аснове структур метал-дыэлектрык-паўправаднік і біпалярных структур) і гібрыдныя (дыскрэтныя бяскорпусныя паўправадніковыя прыборы і інтэгральныя схемы размешчаны на плёначнай падложцы; маюць больш шырокі частотны дыяпазон у параўнанні з маналітнымі; недахопы — меншая шчыльнасць упакоўкі элементаў, меншая надзейнасць). Праектаванне і тэхнал. рэалізацыя вялікіх інтэгральных схем ажыццяўляюцца пры дапамозе ЭВМ.
Вялікія інтэгральныя схемы выкарыстоўваюцца як запамінальныя прыстасаванні, аналага-лічбавыя і лічбавыя пераўтваральнікі, узмацняльнікі, у мікрапрацэсарных камплектах і інш. На Беларусі навук. распрацоўкі і вытворчасць вялікіх інтэгральных схем і звышвялікіх інтэгральных схем ажыццяўляюцца ў навук.-вытв. аб’яднаннях «Інтэграл», «Карал», канцэрне «Планар», Бел. ун-це інфарматыкі і радыёэлектронікі, Мінскім н.-д. прыладабудаўнічым ін-це, НДІ радыёматэрыялаў і інш.
Літ.:
Технология СБИС: Пер. с англ.Кн. 1—2. М., 1986;
Гурский Л.И., Степанец В.Я. Проектирование микросхем. Мн., 1991.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРААКУМУЛЮ́ЮЧАЯ ЭЛЕКТРАСТА́НЦЫЯ
(ГАЭС),
гідраэлектрычная станцыя, прызначаная для зняцця пікаў нагрузкі энергасістэмы. Складаецца з двух басейнаў (вадасховішчаў), размешчаных адзін над адным і злучаных трубаправодам. Прынцып дзеяння заключаецца ў ператварэнні эл. энергіі, атрыманай ад інш. электрастанцый, у патэнцыяльную (акумуляваную ў верхнім басейне) энергію вады з наступным ператварэннем яе зноў у эл. энергію. Дае магчымасць рэгуляваць на працягу сутак, тыдня, сезона дзеянне цеплавых, атамных і інш. станцый, выраўноўвае графік і павышае надзейнасць іх работы.
ГАЭС звычайна абсталёўваюць абарачальнымі гідраагрэгатамі. У часы малых нагрузак (напр., ноччу) пры сілкаванні ад энергасістэмы гідрагенератары працуюць як электрарухавікі і прыводзяць у дзеянне гідраўлічныя турбіны, якія са зменай напрамку вярчэння дзейнічаюць як помпы і перапампоўваюць ваду з ніжняга басейна ў верхні. Колькасць акумуляванай энергіі вызначаецца ёмістасцю верхняга басейна (можа быць штучным або прыродным, напр., возера) і рабочым напорам. У перыяды пікаў (максімумаў) нагрузкі назапашаная вада з верхняга басейна па трубаправодах паступае ў гідраагрэгаты, якія працуюць пры гэтым у генератарным рэжыме і выпрацоўваюць электраэнергію, аддаючы яе ў энергасістэму, а вада назапашваецца ў ніжнім басейне. Будаваць ГАЭС найб. мэтазгодна паблізу ад цэнтраў спажывання электраэнергіі і з як мага большым напорам. Першай у б.СССР дала ток Кіеўская ГАЭС магутнасцю 225 МВт і напорам 73 м (1970). Сярод буйнейшых ГАЭС: Загорская (Маскоўская вобл., Расія) — 1200 МВт, напор 100 м; Віяндэн (Люксембург) — 900 МВт, 280 м; Круахан (Вялікабрытанія) — 400 МВт, 440 м; Том-Сок (ЗША) — 350 МВт, 253 м; Хоэнвартэ-II (ФРГ) — 320 МВт, 305 м.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛАКАФА́РБАВЫЯ ПАКРЫ́ЦЦІ,
пакрыцці, якія ўтвараюцца пасля ацвярдзення (высыхання) лакафарбавых матэрыялаў, нанесеных на цвёрдую паверхню. Асн. прызначэнне Л.п. — ахова матэрыялаў ад разбурэння (напр., металаў ад карозіі, драўніны ад гніення) і дэкаратыўная апрацоўка паверхні.
Паводле эксплуатацыйных уласцівасцей Л.п. падзяляюць на атмасфера-, тэрма-, вода-, масла- і бензаўстойлівыя, хімічна ўстойлівыя, электраізаляцыйныя, кансервацыйныя і спец. прызначэння. Звычайна Л.п. атрымліваюць нанясеннем на паверхню некалькіх слаёў лакафарбавых матэрыялаў, якія адрозніваюцца саставам і хім. прыродай плёнкаўтваральных рэчываў. Адрозніваюць слаі: ніжнія (грунтовачныя, гл.Грунтоўкі), прамежкавыя (шпаклёвачныя, гл.Шпаклёўка), верхнія (покрыўныя), якія ўтвараюць фарбы і лакі. Агульная таўшчыня мнагаслойных Л.п. — 30—300 мкм. Асн.тэхнал. аперацыі атрымання Л.п.: падрыхтоўка паверхні для забеспячэння добрай адгезіі Л.п.; нанясенне лакафарбавых матэрыялаў распыленнем (пнеўматычным, гідраўлічным, аэразольным, у электрастатычным полі высокага напружання), акунаннем, абліваннем, уручную; сушка пры пакаёвай т-ры тэрмапластычных Л.п. ці пры павышаных т-рах (80—160 °C) тэрмарэактыўных; прамежкавая апрацоўка — шліфаванне ніжніх і паліраванне верхніх слаёў для надання Л.п. люстранога бляску. Выкарыстоўваюць ва ўсіх галінах нар гаспадаркі (найб. у машынабудаванні, буд. індустрыі) і ў быце.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛАНЦУГО́ВАЯ Я́ДЗЕРНАЯ РЭА́КЦЫЯ,
ядзерная рэакцыя, у якой часціцы, што выклікаюць яе, утвараюцца як прадукты гэтай рэакцыі. Звязана з вял. энергавыдзяленнем (каля 200 МэВ на кожны акт дзялення ядра урану ці плутонію) і праходзіць з удзелам павольных ці хуткіх нейтронаў. Выкарыстоўваецца як крыніца энергіі (гл.Ядзерны рэактар), на ёй заснаваны прынцып работы ядзернай зброі.
Адзіная вядомая Л.я.р. — рэакцыя дзялення урану і некаторых трансуранавых элементаў пад уздзеяннем нейтронаў — здзейснена Э.Фермі (1942) з дапамогай уран-графітавага рэактара. Суправаджаецца выдзяленнем некалькіх нейтронаў, якія ў сваю чаргу могуць захоплівацца нераздзеленымі ядрамі і выклікаць іх дзяленне. Характарыстычная велічыня Л.я.р — каэфіцыент размнажэння k, які вызначаецца ўсярэдненымі лікамі актаў дзялення ў паслядоўных звёнах ланцуга. Самападтрымная рэакцыя магчыма толькі прык>1; маса дзялільнага рэчыва для здзяйснення такой рэакцыі наз. крытычнай; яе велічыня залежыць ад формы і ізатопнага складу гэтага рэчыва і вагаецца ад соцень грамаў да соцень тон. Рухомыя стрыжні з матэрыялу, які добра паглынае павольныя нейтроны, дазваляюць зрабіць Л.я.р. кіравальнай.
Э.А.Рудак.
Першыя пакаленні нейтронаў, якія ўтвараюцца прыланцуговай ядзернай рэакцыі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗВЫШПРАВАДНІКІ́,
рэчывы, у якіх пры ахаладжэнні ніжэй за крытычную тэмпературу электрычнае супраціўленне падае практычна да нуля — мае месца звышправоднасць.
Ад інш. электраправодных матэрыялаў З. адрозніваюцца поўнай адсутнасцю супраціўлення пастаяннаму эл. току, т.зв. захопам магн. патоку ўнуры кольца з З. і эфектам Майснера (магн. поле не пранікае ў тоўшчу З. пры напружанасці поля, меншай за крытычную, — сілавыя лініі поля агінаюць З.; на гэтым эфекце заснавана дзеянне звышправодных магн. экранаў). Да З. адносяцца многія металы (свінец Pb, алюміній Al, талій Ti, ніобій Nb і інш.), метал сплавы (напр., свінец—золата Pb—Au, ніобій—тытан—цырконій Nb—Ti—Zr), інтэрметалічныя злучэнні, карбіды, нітрыды, некаторыя паўправаднікі і палімеры. З. выкарыстоўваюцца для стварэння звышправодных магнітаў, балометраў, магутных электрагенератараў і рухавікоў, сілавых кабеляў і трансфарматараў вял. магутнасці для сістэм цэнтралізаванага размеркавання электраэнергіі, звышадчувальных дэтэктараў выпрамяненняў, у высакаскораснай лічбавай электроніцы і інш.Гл. таксама Высокатэмпературная звышправоднасць, Джозефсана эфект.
Літ.:
Физико-химия сверхпроводников. М., 1976;
Шмидт В.В. Введение в физику сверхпроводников. М., 1982.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗГУСА́ННЕ КРЫВІ,
ахоўная рэакцыя арганізма, накіраваная на прадухіленне і спыненне крывацёку, праяўляецца ўтварэннем крывянога згустка. Адбываецца пры ўзаемадзеянні фактараў, наяўных у плазме і форменных фактарах (пераважна ў трамбацытах) крыві і тканак. Выдзелена 13 фактараў З.к. (абазначаюцца рымскімі лічбамі). Асн. фазы З.к.: утварэнне актыўнага трамбапласта, ператварэнне пратрамбіну ў трамбін; ператварэнне фібрынагену ў фібрын; стабілізацыя фібрыну. Кроў чалавека ў норме загусае за 5—12 мін. Парушэнні З.к. бываюць пры анамаліях трамбацытаў, сасудзістай сценкі, фактараў згусальнай і супрацьзгусальнай сістэм ці іх спалучэнні. Адрозніваюць колькасныя і якасныя змены (дэфіцыт ці лішак аднаго з фактараў, парушэнне яго актыўнасці або струк гуры і інш.), набытыя (дзеянне таксічных і лек. рэчываў, інфекцыі, анкалагічныя хваробы, парушэнні бялковага і ліпіднага абмену і інш.) і прыроджаныя. Вынікі парушэння: запаволенае З.к. і крывацёкі (дыятэз гемарагічны), паскоранае З.к. і лакальнае (трамбоз) ці генералізаванае ўнутрысасудзістае З.к.
Літ.:
Кудряшев Б.А Биологические проблемы регуляции жидкого состояния крови и ее свертывания. М., 1975;
Фермилен Ж., Ферстате М. Гемостаз: Пер. с фр.М., 1984.