ГО́МЕЛЬСКІ НАСТА́ЎНІЦКІ ІНСТЫТУ́Т.

Існаваў у 1936—54 пры Гомельскім пед. ін-це. Рыхтаваў настаўнікаў 5—7-х класаў агульнаадук. школы. Тэрмін навучання 2 гады. Меў аддзяленні: фіз.-матэм., прыродазнаўча-геагр., рус. і бел. мовы і л-ры, гіст., завочнае і падрыхтоўчае (з 1944). У 1941 эвакуіраваны ў г. Амутнінск Кіраўскай вобл. Аднавіў работу ў Гомелі ў 1944. У 1954 аб’яднаны з Гомельскім пед. ін-там.

т. 5, с. 346

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛО́СНЫЯ ГУ́КІ,

гукі мовы, пры ўтварэнні якіх паветра свабодна праходзіць праз поласць рота. У акустычных адносінах гэта муз. тоны з нязначнымі шумамі. Кожны галосны гук у залежнасці ад формы, набытай поласцю рота і поласцю глоткі (рэзанатары) пры яго вымаўленні, мае пэўную колькасць уласных тонаў, якія наз. характэрнымі тонамі галоснага ці яго фармантамі. Сукупнасць тонаў утварае тэмбр; ім галосныя адрозніваюцца адзін ад аднаго. Агульныя анатама-фізіял. ўмовы ўтварэння галосных гукаў: адсутнасць у маўленчым апараце якіх-н. значных перашкод, што маглі б спрыяць узнікненню шуму; слабая паветраная плынь; напружанасць усіх органаў маўлення. За найб. зручную навук. класіфікацыю прынята лічыць анатама-фізіял., ці генетычную, заснаваную на стане артыкуляцыйных органаў. Асн. ролю пры ўтварэнні галосных гукаў выконваюць губы, язык, мяккае паднябенне.

Паводле актыўнасці-пасіўнасці губ бел. галосныя гукі падзяляюцца на губныя, ці лабіялізаваныя («о», «у»), і негубныя, ці нелабіялізаваныя («і», «ы», «э», «а»). У залежнасці ад стану языка па гарызанталі — на 3 групы: пярэдняга рада («і», «э»), сярэдняга, ці мяшанага, рада («ы», «а»), задняга рада («у», «о»). Паводле руху языка па вертыкалі — на ступені пад’ёму: верхняга пад’ёму, ці закрытыя, вузкія («і», «ы», «у»); сярэдняга пад’ёму («о», «э»); ніжняга пад’ёму, ці адкрытыя, шырокія («а»). У залежнасці ад стану мяккага паднябення — на ротавыя, ці неназалізаваныя (усе галосныя гукі сучаснай бел. мовы), і насавыя, ці назалізаваныя (Ѫ, Ѧ у стараслав., ą, ę; у польск., ɑ̃, ɛ̃ у франц. мове).

Літ.:

Камароўскі Я.М., Сямешка Л.І. Сучасная беларуская мова: Фанетыка і фаналогія. Арфаэпія. Графіка. Арфаграфія. Мн., 1985.

Л.П.Падгайскі.

т. 4, с. 468

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПРАМЯНЕ́ННЕ АРГАНІ́ЗМА,

прыроднае або штучнае ўздзеянне выпрамяненняў на жывы арганізм. У натуральных умовах жывыя істоты апраменьваюцца інфрачырвоным (цеплавое апрамяненне), бачным і ультрафіялетавым сонечным святлом, а таксама касм. прамянямі і іанізоўным выпрамяненнем зямнога паходжання (гл. Фон радыеактыўны). Пры штучным апрамяненні арганізма часцей скарыстоўваюць іанізавальныя, ультрафіялетавыя, ультравысокачастотныя выпрамяненні. Адрозніваюць апрамяненне арганізма татальнае (усяго цела) і лакальнае (частковае), вострае (за кароткі прамежак часу) і хранічнае, або пралангаванае (працяглае), аднаразовае і фракцыянаванае (сумарная доза паступае часткамі, з рознымі прамежкамі часу), вонкавае і ўнутранае (ад радыеактыўных рэчываў, што трапілі ў арганізм). Па даных Навук. к-та ААН па дзеянні атамнай радыяцыі (НКДАР ААН; 1988) сярэднія дозавыя нагрузкі насельніцтва Зямлі ў пераліку на гадавыя эфектыўныя эквівалентныя дозы апрамянення складаюць у мілізівертах (мЗв): ад натуральных крыніц радыяцыі зямнога паходжання пры ўнутр. апрамяненні 1,325, пры вонкавым 0,35; касмічнага паходжання 0,3 і 0,015 адпаведна; ад крыніц, якія выкарыстоўваюцца ў медыцыне, 0,4; ад радыеактыўных ападкаў 0,02; ад атамнай энергетыкі 0,001. На тэр., што пацярпелі ад буйных радыяц. катастроф (напр., Кыштымская 1957, Расія; Чарнобыльская 1986, і інш.), пасляаварыйныя дозавыя нагрузкі на арганізм значна адрозніваюцца ад сярэдніх. Напр., праз 5 гадоў пасля Чарнобыльскай катастрофы на Гомельшчыне гадавая эфектыўная эквівалентная доза апрамянення складала (мЗв): у Брагіне 2,5, Ветцы 3,1, Буда-Кашалёве 1,3, Карме 2. У «Каталог дозаў апрамянення насельніцтва Рэспублікі Беларусь» (1992) занесена 3326 нас. пунктаў, дзе шчыльнасць забруджвання цэзіем-137 складала 15—40 Кі/км² і сумарныя гадавыя эквівалентныя дозы да 2—3 мЗв. Гл. таксама Біялагічнае дзеянне іанізавальных выпрамяненняў.

т. 1, с. 433

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЎТАМАТЫЗА́ЦЫЯ ПРАЕКТАВА́ННЯ,

выкарыстанне ЭВМ і інш. сродкаў аўтаматызацыі, аб’яднаных у сістэму класа «чалавек—машына» для праектавання машын, абсталявання, збудаванняў і інш. аб’ектаў.

Аўтаматызацыя праектавання дае магчымасць павялічыць дакладнасць разлікаў і канструктарскай дакументацыі, выбіраць варыянты для рэалізацыі на аснове матэм. аналізу ўсіх або большасці з іх, скараціць тэрміны праектавання і інш. Метады і сродкі аўтаматызацыі праектавання залежаць ад характару і прызначэння аб’екта праектавання. Найб. істотныя вынікі атрымліваюцца пры аўтаматызацыі праектавання складаных тэхн. сістэм і збудаванняў, пры падрыхтоўцы праграмна-кіравальнага выканаўчага абсталявання. З дапамогай графапабудавальнікаў, друкавальных прыстасаванняў і інш. сродкаў вываду інфармацыі вынікі аўтаматызацыі праектавання аўтаматычна выдаюцца ў выглядзе схем, чарцяжоў ці графікаў (табліц) на аркушах паперы чарцёжных фарматаў, магнітнай стужцы, мікрафільмах і інш. або на спец. экране. Пры аўтаматызацыі праектавання машын і механізмаў па зыходных даных вызначаюць найлепшы варыянт кампаноўкі вырабу, выбіраюць і разлічваюць канструкцыю і яе асобныя вузлы, аптымізуюць допускі і пасадкі, вызначаюць форму спалучаных паверхняў, чысціню іх апрацоўкі і інш.

Навукова-тэхн. распрацоўкі сістэм аўтаматызацыі праектавання вядуцца ў Ін-це тэхн. кібернетыкі АН Беларусі з 1960-х г.: сфармуляваны асновы аўтаматызацыі праектавання ў машынабудаванні; створаны першыя алгарытмы, праграмы і тэхн. сродкі канструявання і тэхнал. падрыхтоўкі вытв-сці машын і абсталявання; распрацаваны «аўтаматычны чарцёжнік» дае магчымасць з вял. дакладнасцю рабіць чарцяжы вырабаў складанай канфігурацыі (карабельных вінтоў, крыла самалёта, лапатак рабочых колаў турбін і інш.).

Літ.:

Системы автоматизированного проектирования технологических процессов, приспособлений и режущих инструментов. М., 1988;

Ракович А.Г. Основы автоматизации проектирования технологических приспособлений. Мн., 1985.

А.Г.Раковіч.

т. 2, с. 115

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КАЯ ІНТЭГРА́ЛЬНАЯ СХЕ́МА,

інтэгральная схема з вялікай колькасцю схемных элементаў (высокай ступені інтэграцыі); асн. элементная база ЭВМ і радыёэлектронных сродкаў. Аналагавыя вялікія інтэгральныя схемы маюць да 800, лічбавыя — да некалькіх дзесяткаў тысяч элементаў. Звышвялікая інтэгральная схема мае на парадак большую ступень інтэграцыі. Вялікія інтэгральныя схемы забяспечваюць надзейнасць радыёэлектроннай тэхнікі, яе малыя габарыты і масу, нізкую спажываную магутнасць.

Асаблівасць вялікіх інтэгральных схем — малыя памеры яе элементаў і міжэлементных злучэнняў (да 1,2 мкм пры выкарыстанні фоталітаграфіі і менш за 1 мкм пры рэнтгенаўскай і электроннай літаграфіі); скарачэнне колькасці знешніх вывадаў для забеспячэння хуткадзеяння, напр. у аднакрышталёвых ЭВМ. Адрозніваюць вялікія інтэгральныя схемы цвердацельныя (маналітныя; бываюць на аснове структур метал-дыэлектрык-паўправаднік і біпалярных структур) і гібрыдныя (дыскрэтныя бяскорпусныя паўправадніковыя прыборы і інтэгральныя схемы размешчаны на плёначнай падложцы; маюць больш шырокі частотны дыяпазон у параўнанні з маналітнымі; недахопы — меншая шчыльнасць упакоўкі элементаў, меншая надзейнасць). Праектаванне і тэхнал. рэалізацыя вялікіх інтэгральных схем ажыццяўляюцца пры дапамозе ЭВМ.

Вялікія інтэгральныя схемы выкарыстоўваюцца як запамінальныя прыстасаванні, аналага-лічбавыя і лічбавыя пераўтваральнікі, узмацняльнікі, у мікрапрацэсарных камплектах і інш. На Беларусі навук. распрацоўкі і вытворчасць вялікіх інтэгральных схем і звышвялікіх інтэгральных схем ажыццяўляюцца ў навук.-вытв. аб’яднаннях «Інтэграл», «Карал», канцэрне «Планар», Бел. ун-це інфарматыкі і радыёэлектронікі, Мінскім н.-д. прыладабудаўнічым ін-це, НДІ радыёматэрыялаў і інш.

Літ.:

Технология СБИС: Пер. с англ. Кн. 1—2. М., 1986;

Гурский Л.И., Степанец В.Я. Проектирование микросхем. Мн., 1991.

В.У.Баранаў, А.П.Дастанка.

т. 4, с. 380

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРААКУМУЛЮ́ЮЧАЯ ЭЛЕКТРАСТА́НЦЫЯ

(ГАЭС),

гідраэлектрычная станцыя, прызначаная для зняцця пікаў нагрузкі энергасістэмы. Складаецца з двух басейнаў (вадасховішчаў), размешчаных адзін над адным і злучаных трубаправодам. Прынцып дзеяння заключаецца ў ператварэнні эл. энергіі, атрыманай ад інш. электрастанцый, у патэнцыяльную (акумуляваную ў верхнім басейне) энергію вады з наступным ператварэннем яе зноў у эл. энергію. Дае магчымасць рэгуляваць на працягу сутак, тыдня, сезона дзеянне цеплавых, атамных і інш. станцый, выраўноўвае графік і павышае надзейнасць іх работы.

ГАЭС звычайна абсталёўваюць абарачальнымі гідраагрэгатамі. У часы малых нагрузак (напр., ноччу) пры сілкаванні ад энергасістэмы гідрагенератары працуюць як электрарухавікі і прыводзяць у дзеянне гідраўлічныя турбіны, якія са зменай напрамку вярчэння дзейнічаюць як помпы і перапампоўваюць ваду з ніжняга басейна ў верхні. Колькасць акумуляванай энергіі вызначаецца ёмістасцю верхняга басейна (можа быць штучным або прыродным, напр., возера) і рабочым напорам. У перыяды пікаў (максімумаў) нагрузкі назапашаная вада з верхняга басейна па трубаправодах паступае ў гідраагрэгаты, якія працуюць пры гэтым у генератарным рэжыме і выпрацоўваюць электраэнергію, аддаючы яе ў энергасістэму, а вада назапашваецца ў ніжнім басейне. Будаваць ГАЭС найб. мэтазгодна паблізу ад цэнтраў спажывання электраэнергіі і з як мага большым напорам. Першай у б. СССР дала ток Кіеўская ГАЭС магутнасцю 225 МВт і напорам 73 м (1970). Сярод буйнейшых ГАЭС: Загорская (Маскоўская вобл., Расія) — 1200 МВт, напор 100 м; Віяндэн (Люксембург) — 900 МВт, 280 м; Круахан (Вялікабрытанія) — 400 МВт, 440 м; Том-Сок (ЗША) — 350 МВт, 253 м; Хоэнвартэ-II (ФРГ) — 320 МВт, 305 м.

Літ.:

Гл. пры арт. Гідраэлектрычная станцыя.

У.М.Сацута.

т. 5, с. 221

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАКАФА́РБАВЫЯ ПАКРЫ́ЦЦІ,

пакрыцці, якія ўтвараюцца пасля ацвярдзення (высыхання) лакафарбавых матэрыялаў, нанесеных на цвёрдую паверхню. Асн. прызначэнне Л.п. — ахова матэрыялаў ад разбурэння (напр., металаў ад карозіі, драўніны ад гніення) і дэкаратыўная апрацоўка паверхні.

Паводле эксплуатацыйных уласцівасцей Л.п. падзяляюць на атмасфера-, тэрма-, вода-, масла- і бензаўстойлівыя, хімічна ўстойлівыя, электраізаляцыйныя, кансервацыйныя і спец. прызначэння. Звычайна Л.п. атрымліваюць нанясеннем на паверхню некалькіх слаёў лакафарбавых матэрыялаў, якія адрозніваюцца саставам і хім. прыродай плёнкаўтваральных рэчываў. Адрозніваюць слаі: ніжнія (грунтовачныя, гл. Грунтоўкі), прамежкавыя (шпаклёвачныя, гл. Шпаклёўка), верхнія (покрыўныя), якія ўтвараюць фарбы і лакі. Агульная таўшчыня мнагаслойных Л.п. — 30—300 мкм. Асн. тэхнал. аперацыі атрымання Л.п.: падрыхтоўка паверхні для забеспячэння добрай адгезіі Л.п.; нанясенне лакафарбавых матэрыялаў распыленнем (пнеўматычным, гідраўлічным, аэразольным, у электрастатычным полі высокага напружання), акунаннем, абліваннем, уручную; сушка пры пакаёвай т-ры тэрмапластычных Л.п. ці пры павышаных т-рах (80—160 °C) тэрмарэактыўных; прамежкавая апрацоўка — шліфаванне ніжніх і паліраванне верхніх слаёў для надання Л.п. люстранога бляску. Выкарыстоўваюць ва ўсіх галінах нар гаспадаркі (найб. у машынабудаванні, буд. індустрыі) і ў быце.

т. 9, с. 107

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАНЦУГО́ВАЯ Я́ДЗЕРНАЯ РЭА́КЦЫЯ,

ядзерная рэакцыя, у якой часціцы, што выклікаюць яе, утвараюцца як прадукты гэтай рэакцыі. Звязана з вял. энергавыдзяленнем (каля 200 МэВ на кожны акт дзялення ядра урану ці плутонію) і праходзіць з удзелам павольных ці хуткіх нейтронаў. Выкарыстоўваецца як крыніца энергіі (гл. Ядзерны рэактар), на ёй заснаваны прынцып работы ядзернай зброі.

Адзіная вядомая Л.я.р. — рэакцыя дзялення урану і некаторых трансуранавых элементаў пад уздзеяннем нейтронаў — здзейснена Э.Фермі (1942) з дапамогай уран-графітавага рэактара. Суправаджаецца выдзяленнем некалькіх нейтронаў, якія ў сваю чаргу могуць захоплівацца нераздзеленымі ядрамі і выклікаць іх дзяленне. Характарыстычная велічыня Л.я.р — каэфіцыент размнажэння k, які вызначаецца ўсярэдненымі лікамі актаў дзялення ў паслядоўных звёнах ланцуга. Самападтрымная рэакцыя магчыма толькі пры к>1; маса дзялільнага рэчыва для здзяйснення такой рэакцыі наз. крытычнай; яе велічыня залежыць ад формы і ізатопнага складу гэтага рэчыва і вагаецца ад соцень грамаў да соцень тон. Рухомыя стрыжні з матэрыялу, які добра паглынае павольныя нейтроны, дазваляюць зрабіць Л.я.р. кіравальнай.

Э.А.Рудак.

Першыя пакаленні нейтронаў, якія ўтвараюцца пры ланцуговай ядзернай рэакцыі.

т. 9, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШПРАВАДНІКІ́,

рэчывы, у якіх пры ахаладжэнні ніжэй за крытычную тэмпературу электрычнае супраціўленне падае практычна да нуля — мае месца звышправоднасць.

Ад інш. электраправодных матэрыялаў З. адрозніваюцца поўнай адсутнасцю супраціўлення пастаяннаму эл. току, т.зв. захопам магн. патоку ўнуры кольца з З. і эфектам Майснера (магн. поле не пранікае ў тоўшчу З. пры напружанасці поля, меншай за крытычную, — сілавыя лініі поля агінаюць З.; на гэтым эфекце заснавана дзеянне звышправодных магн. экранаў). Да З. адносяцца многія металы (свінец Pb, алюміній Al, талій Ti, ніобій Nb і інш.), метал сплавы (напр., свінец—золата Pb—Au, ніобій—тытан—цырконій Nb—Ti—Zr), інтэрметалічныя злучэнні, карбіды, нітрыды, некаторыя паўправаднікі і палімеры. З. выкарыстоўваюцца для стварэння звышправодных магнітаў, балометраў, магутных электрагенератараў і рухавікоў, сілавых кабеляў і трансфарматараў вял. магутнасці для сістэм цэнтралізаванага размеркавання электраэнергіі, звышадчувальных дэтэктараў выпрамяненняў, у высакаскораснай лічбавай электроніцы і інш. Гл. таксама Высокатэмпературная звышправоднасць, Джозефсана эфект.

Літ.:

Физико-химия сверхпроводников. М., 1976;

Шмидт В.В. Введение в физику сверхпроводников. М., 1982.

Я.М.Галалобаў.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗГУСА́ННЕ КРЫВІ,

ахоўная рэакцыя арганізма, накіраваная на прадухіленне і спыненне крывацёку, праяўляецца ўтварэннем крывянога згустка. Адбываецца пры ўзаемадзеянні фактараў, наяўных у плазме і форменных фактарах (пераважна ў трамбацытах) крыві і тканак. Выдзелена 13 фактараў З.к. (абазначаюцца рымскімі лічбамі). Асн. фазы З.к.: утварэнне актыўнага трамбапласта, ператварэнне пратрамбіну ў трамбін; ператварэнне фібрынагену ў фібрын; стабілізацыя фібрыну. Кроў чалавека ў норме загусае за 5—12 мін. Парушэнні З.к. бываюць пры анамаліях трамбацытаў, сасудзістай сценкі, фактараў згусальнай і супрацьзгусальнай сістэм ці іх спалучэнні. Адрозніваюць колькасныя і якасныя змены (дэфіцыт ці лішак аднаго з фактараў, парушэнне яго актыўнасці або струк гуры і інш.), набытыя (дзеянне таксічных і лек. рэчываў, інфекцыі, анкалагічныя хваробы, парушэнні бялковага і ліпіднага абмену і інш.) і прыроджаныя. Вынікі парушэння: запаволенае З.к. і крывацёкі (дыятэз гемарагічны), паскоранае З.к. і лакальнае (трамбоз) ці генералізаванае ўнутрысасудзістае З.к.

Літ.:

Кудряшев Б.А Биологические проблемы регуляции жидкого состояния крови и ее свертывания. М., 1975;

Фермилен Ж., Ферстате М. Гемостаз: Пер. с фр. М., 1984.

А.В.Лявонава.

т. 7, с. 46

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)