Квантары 3/194; 4/588; 5/539; 7/83; 9/512; 10/542

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

ква́нтары

т. 8, с. 211

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПЕРА́ТАР (ад лац. operator які дзейнічае), 1) у матэматыцы — адпаведнасць паміж элементамі двух мностваў X і Y (кожнаму элементу x з X адпавядае пэўны элемент y з Y). Раўназначныя паняцці: адлюстраванне, пераўтварэнне, функцыя, функцыянал. Важны клас аператара — лінейныя аператары ў лінейнай алгебры і функцыянальным аналізе. Дыферэнцыяльнымі і інтэгральнымі аператарамі карыстаюцца ў матэм. фізіцы, тэорыі дыферэнцыяльных і інтэгральных ураўненняў і інш. Напр., аператар дыферэнцавання f(x) = d f(x) d x ; інтэгральны f(x) = a b K (x, x′) f(x′) d x′ ; зруху f(x) = f(x + a) . Да логікавых аператараў адносяцца кан’юнкцыя, дыз’юнкцыя, імплікацыя, адмаўленне, квантары агульнасці і існавання.

2) У вылічальнай тэхніцы — прадпісанне на мове праграмавання закончанага дзеяння ў праграме, напр. прысваенне лікавага значэння пераменнай велічыні, перадача кіравання, выклік падпраграмы, цыкл.

3) У тэхніцы — спецыяліст, які кіруе з пульта абсталяваннем, напр. ЭВМ, радыёлакацыйнай станцыяй.

М.П.Савік.

т. 1, с. 423

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛО́ГІКА ПРЭДЫКА́ТАЎ, функцыянальная логіка,

раздзел логікі, у якім вывучаюцца лагічныя сувязі паміж выказваннямі з улікам іх унутранай (суб’ектна-прэдыкатнай) структуры; пашыраны варыянт логікі выказванняў. Прадметам даследавання з’яўляецца любая галіна аб’ектаў з дадзенымі на гэтых аб’ектах прэдыкатамі, г. зн. уласцівасцямі і адносінамі. У выніку фармалізацыі Л.п. прымае выгляд розных злічэнняў (напр., злічэнне выказванняў). Пры аналізе ўплыву на лагічны вывад унутр. структуры выказванняў прэдыкаты разглядаюцца як функцыі, значэннямі якіх служаць выказванні. У дапаўненне да сімвалічных сродкаў логікі выказванняў у мову Л.п. уведзены лагічныя знакі — аператары ∀ («для ўсіх») і ∃ («для некаторых», існуе... такое, што...»), якія адпаведна наз. квантарамі агульнасці і існавання. Для выяўлення структуры выказванняў уводзіцца бясконцы пералік індывідных пераменных x, y, z ... x​1, y​1, z​1, .... якія ўяўляюць сабой розныя аб’екты, і бясконцы пералік прэдыкатных пераменных P, Q, R, ..., P​1, Q​1, R​1 ..., якія ўяўляюць сабой уласцівасці і адносіны аб’ектаў. Запіс (∀x)P(x) азначае «Усякі x валодае ўласцівасцю P»; (∃x)P(x) — «некаторыя x валодаюць уласцівасцю P» і (∃xQ(xy) — «існуе x, які знаходзіцца ў адносінах Q з y» і да т.п. Квантары могуць звязваць у формулах індывідныя (звязаныя) пераменныя. Індывідныя пераменныя, не звязаныя ў формуле квантарамі, наз. свабоднымі. Так, ва ўсіх трох прыведзеных формулах пераменная х звязаная, у апошняй формуле пераменная у свабодная. Звязаныя пераменныя наз. фіктыўнымі. Формулы, якія прымаюць значэнне «ісціна» ў кожнай інтэрпрэтацыі, наз. агульназначнымі. Існуюць таксама некласічныя Л.п., якія прапануюць іншыя тлумачэнні лагічных звязак і квантара.

Літ.:

Колмогоров А.Н., Драгалин А.Г. Введение в математическую логику. М., 1982;

Жуков Н.И. Философские основания математики. 2 изд. Мн. 1990.

С.Ф.Дубянецкі.

т. 9, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЛІЧЭ́ННЕ,

сістэма правіл аперыравання са знакамі пэўнага віду, якая дазваляе даць дакладнае апісанне некаторага класа задач і алгарытмы іх рашэння; спосаб утварэння якой-н. сукупнасці (мноства) элементаў на аснове правіл атрымання новых элементаў з зададзеных зыходных. Мае фундаментальны характар, як і паняцце алгарытму. Узнікла і развівалася ў рамках матэматыкі (гл. Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Дыферэнцыяльнае злічэнне, Інтэгральнае злічэнне). Пазней метады пабудовы З. пачалі выкарыстоўвацца ў логіцы (гл. Алгебра логікі, Матэматычная лінгвістыка). Агульная тэорыя З. выкарыстоўваецца ў алгарытмаў тэорыі.

У матэматычнай логіцы любое З. адназначна задаецца зыходнымі элементамі (алфавітам З.), правіламі ўтварэння формул дадзенага З. (слоў ці выразаў), сукупнасцю аксіём і правіл пераўтварэння (вывядзення) яго фразеалогіі. Прыпісванне элементам З. пэўных значэнняў (гл. Семантыка лагічная) пераўтварае З. ў фармалізаваную мову. Напр., у З. выказванняў шляхам пэўнай канечнай працэдуры (доказу; улічваецца толькі праўдзівасць ці непраўдзівасць выказвання) атрымліваюць выказванні-тэарэмы (гл. Логіка выказванняў). У выніку атрымліваюць лагічную сістэму, якая фармалізуе разважанне, заснаванае на структуры складаных выказванняў у адрозненне ад унутранай структуры элементарных выказванняў. Пры З. прэдыкатаў атрымліваюць сцвярджэнні (формулы, тэарэмы) з улікам суб’ектна-прэдыкатыўнай структуры выказванняў (напр., «элемент X мае ўласцівасць P), што дае магчымасць выяўляць сувязь аб’ектаў з іх уласцівасцямі і суадносіны паміж імі, колькасна характарызаваць сувязь рэчаў, уласцівасцей і адносін з дапамогай лагічных эквівалентаў выразаў «усе», «некаторыя», «кожны» і інш. (гл. Квантары). Такое З. адпавядае логіцы прэдыкатаў, калі яно мае ўласцівасці несупярэчлівасці (кожная тэарэма агульназначная) і паўнаты (кожная агульназначная формула даказальная). З. прэдыкатаў уключае З. выказванняў і разглядаецца звычайна як яго пашырэнне шляхам фармалізацыі вывадаў, заснаваных на ўнутранай структуры выказванняў. Тэорыю З. прэдыкатаў распрацаваў ням. логік, матэматык і філосаф Г.Фрэге, чым істотна ўзбагаціў сілагістыку Арыстоцеля і традыц. сілагістыку. Абагульненне З. выказванняў — З. класаў, дзе дадаткова разглядаецца суб’ектна-прэдыкатная структура выказванняў і пры гэтым з кожным прэдыкатам (уласцівасцю) звязваецца ўся сукупнасць элементаў (клас) з разгляданай вобласці, якія маюць гэтую ўласцівасць (гл. Логіка класаў). З. класаў часам разглядаюць як фармалізаваную тэорыю мностваў, выкарыстоўваюць як дапаможны этап пры пераходзе ад З. выказванняў да З. прэдыкатаў і будуюць на базе З. выказванняў з дапамогай адпаведнай інтэрпрэтацыі яго формул.

Літ.:

Гильберт Д., Аккерман В. Основы теоретической логики: Пер. с нем. М., 1947;

Методологические проблемы развития и применения математики. М., 1985;

Жуков Н.И. Философские основания математики. 2 изд. Мн., 1990.

С.Ф.Дубянецкі.

т. 7, с. 76

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)