ЛО́РЭНЦ ((Lorentz) Хендрык Антон) (18.7.1853, г. Арнем, Нідэрланды — 4.2.1928),
нідэрландскі фізік-тэарэтык, стваральнік электроннай тэорыі і электрадынамікі рухомых асяроддзяў. Замежны чл.-кар.Пецярб.АН (1910), ганаровы чл.АНСССР (1925). Вучыўся ў Лейдэнскім ун-це (1870—72), з 1878 праф. гэтага ун-та. З 1923 дырэктар ін-та Тэйлара ў Харлеме. Арганізатар і старшыня Сальвееўскіх кангрэсаў фізікаў (1914—27). Навук. працы па электрадынаміцы, тэрмадынаміцы і статыстычнай механіцы, оптыцы і тэорыі выпрамянення. Зыходзячы з эл.-магн. тэорыі Дж.Максвела стварыў класічную электронную тэорыю (1880—1909), на падставе якой растлумачыў шэраг эл.-магн. з’яў, а таксама эл.-магн. і аптычныя ўласцівасці рэчыва, атрымаў формулу для вызначэння сілы, што дзейнічае на рухомы зарад у магн. полі (гл.Лорэнца сіла), растлумачыў Зеемана з’яву. Незалежна ад Дж.Лармара атрымаў рэлятывісцкія пераўтварэнні каардынат і часу (гл.Лорэнца пераўтварэнні). Даследаванні Л. спрыялі стварэнню адноснасці тэорыі. Нобелеўская прэмія 1902 (разам з П.Зееманам).
Літ.:
Кляус Е.М., Франкфурт У.И., Френк А.М. Г.А.Лоренц, 1853—1928. М., 1974.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА,
інструментальны сродак (або сукупнасць сродкаў) для апрацоўкі інфармацыі, у т. л. вылічэнняў, кіравання, рашэння задач. Бываюць мех., эл., электронныя, гідраўл., пнеўматычныя, аптычныя і камбінаваныя; у залежнасці ад формы выяўлення інфармацыі адрозніваюць аналагавыя вылічальныя машыны, лічбавыя вылічальныя машыны і гібрыдныя вылічальныя сістэмы.
Першы праект універсальнай «аналітычнай машыны» (гіганцкага арыфмометра з праграмным кіраваннем, арыфм. і запамінальным блокам), які, аднак, не быў поўнасцю рэалізаваны, распрацаваў англ. вынаходца і матэматык Ч.Бэбідж у 1883. Асн. ідэі праекта закладзены ў аснову работы сучаснай вылічальнай машыны: праграма вылічэнняў захоўваецца ў памяці машыны і выконваецца аўтаматычна. Развіццё электратэхнікі і радыёэлектронікі прывяло да стварэння ў 1930-я г. спецыялізаваных аналагавых вылічальных машын. Першыя электронныя вылічальныя машыны, заснаваныя на выяўленні інфармацыі ў лічбавай двайковай форме, распрацаваны ў 1940-я г. на аснове развіцця эл. пераключальных схем у аўтам.тэлеф. сувязі, электроннай кантрольна-вымяральнай апаратуры, радыёлакацыі. Гл. таксама Вылічальная машына «Мінск», Вылічальная тэхніка, Вылічальны цэнтр, Вылічальная сістэма.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МОНАКРЫШТА́ЛЬ,
(ад мона... + крышталі), асобны крышталь з адзінай неперарыўнай крышт. рашоткай. Характэрная асаблівасць М. — залежнасць большасці яго фіз. уласцівасцей ад напрамку (анізатрапія). Усе яго фіз. ўласцівасці (эл., магн., аптычныя, акустычныя, мех. і інш.) звязаны паміж сабой і абумоўлены крышт. структурай, сіламі сувязі паміж атамамі і энергет. спектрам электронаў (гл.Зонная тэорыя).
Многія М. маюць асаблівыя фіз. ўласцівасці: алмаз вельмі цвёрды, сапфір, кварц, флюарыт — надзвычай празрыстыя, ніткападобныя крышталі карунду рэкордна моцныя. Многія М. адчувальныя да знешніх уздзеянняў (святла, мех. напружанняў, магн. і эл. палёў, радыяцыі і інш.) і выкарыстоўваюцца як пераўтваральнікі ў квантавай электроніцы, радыёэлектроніцы, лазернай фізіцы, акустыцы і інш. Прыродныя М. трапляюцца рэдка, найчасцей маюць малыя памеры і вял. колькасць дэфектаў структуры (гл.Дэфекты ў крышталях) Таму ў электронным прыладабудаванні выкарыстоўваюць штучныя М. з дасканалай крышт. структурай, зададзенымі ўласцівасцямі і памерамі (гл.Сінтэтычныя крышталі). Створана вял. колькасць сінтэтычных М., якія не маюць прыродных аналагаў.
Літ.:
Лодиз Р.А., Паркер Р.Л. Рост монокристаллов: Пер. с англ.М., 1974;
Нашельский А.Я. Монокристаллы полупроводников. М., 1978.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НО́СЬБІТ ІНФАРМА́ЦЫІ,
матэрыяльны сродак для запісу, назапашвання, захоўвання і ўзнаўлення інфармацыі, а таксама абмену ёю паміж людзьмі або машынамі. Інфармацыя запісваецца шляхам змен фіз., хім. ці мех. уласцівасцей запамінальнага асяроддзя. Выкарыстоўваецца ў сістэмах гука- і відэазапісу, аўтам. апрацоўкі інфармацыі, інфармацыйна-пошукавых сістэмах і інш.
Асн. паказчыкі: габарытныя памеры, шчыльнасць запісу, часавыя характарыстыкі (працягласць запісу, счытвання і пошуку інфармацыі) і інш. Бываюць з неперарыўным (магн. стужкі, аптычныя і магн. дыскі і інш.) і дыскрэтным (ферытавыя стрыжні і кольцы, перфакарты і інш.) асяроддзем запісу, адна- (аднаразовы запіс інфармацыі і мнагакратнае счытванне) і шматразовыя (мнагакратныя запіс і сціранне інфармацыі на адных і тых жа ўчастках асяроддзя). Адрозніваюць таксама чалавекаарыентаваныя (напр., папяровыя носьбіты рукапіснай, друкаванай і выяўл. інфармацыі) і машынаарыентаваныя Н.і., якія дазваляюць непасрэдна ўводзіць інфармацыю ў ЭВМ, выліч. сістэмы і інш. Праблемай беспапяровай інфарматыкі з’яўляецца наданне юрыд. сілы машынным Н.і.
На Беларусі прававыя асновы (у т.л. аўтарскія правы) выкарыстання электронных дакументаў на машынных Н.і. рэгламентуюцца законам «Аб электронным дакуменце» (2000).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АПТЫ́ЧНАЯ СУ́ВЯЗЬ,
перадача інфармацыі з дапамогай эл.-магн. хваляў аптычнага дыяпазону (1014—1015Гц). Першая лінія аптычнага тэлеграфа пабудавана ў 1794 паміж Парыжам і Лілем (225 км). Стварэнне лазераў, святлодыёдаў, фотапрыёмнікаў, валаконна-аптычных кабеляў з надзвычай малымі стратамі дало магчымасць стварыць аптычную сувязь, якая мае перавагу над інш. відамі сувязі па колькасці каналаў (вял. Прапускная здольнасць), ахове ад перашкод, далёкасці і хуткасці перадачы, па эканоміі металу (металу (медзі, алюмінію), па рэальнасці стварэння інтэгральных і інтэлектуальных сетак сувязі.
Для мадуляцыі лазернага выпрамянення ўздзейнічаюць на працэс яго генерацыі або выкарыстоўваюць мадулятар святла. На выхадзе перадатчыка фарміруецца вузкі маларазбежны прамень святла; трапляючы на ўваход прыёмніка, ён накіроўваецца на фотадэтэктар, дзе аптычнае выпрамяненне пераўтвараецца ў эл. сігнал, які ўзмацняецца і апрацоўваецца звычайнымі радыётэхн. Метадамі. Адрозніваюць аптычную сувязь з адкрытымі лініямі (для перадачы сігналаў праз атмасферу Зямлі ці касм. прастору) і з закрытымі святлаводнымі каналамі (валаконна-аптычныя лініі сувязі; выкарыстоўваюцца ў наземных і падводных умовах).
Літ.:
Алишев Я.В. Многоканальные системы передачи оптического диапазона. Мн., 1986;
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АПТЫ́ЧНЫ РЭЗАНА́ТАР,
сістэма люстраных адбівальных паверхняў, у якой узбуджаюцца і падтрымліваюцца стаячыя ці бягучыя электрамагнітныя хвалі аптычнага дыяпазону. У адрозненне ад аб’ёмнага рэзанатара аптычны з’яўляецца адкрытым (няма бакавых сценак). Аптычны рэзанатар — адзін з важнейшых элементаў лазера. Асн. характарыстыка аптычнага рэзанатара — дыхтоўнасць (вызначае страты светлавой энергіі і характарызуе рэзанансныя ўласцівасці).
Прасцейшы аптычны рэзанатар — інтэрферометр Фабры—Перо, які складаецца з 2 плоскіх строга паралельных люстэркаў, што знаходзяцца на адлегласці L, значна большай за даўжыню хвалі λ. Калі паміж люстэркамі ўздоўж восі рэзанатара распаўсюджваецца плоская светлавая хваля, то ў выніку адбіцця ад люстэркаў і інтэрферэнцыі адбітых хваляў утвараецца стаячая хваля. Умова рэзанансу: L = q∙λ/2. дзе q — падоўжны індэкс ваганняў (колькасць паўхваляў, што ўкладаюцца ўздоўж восі аптычнага рэзанатара). У лазернай тэхніцы выкарыстоўваюцца канфакальныя рэзанатары, утвораныя сферычнымі люстэркамі, якія разнесены на адлегласць, роўную радыусу іх крывізны, а таксама кальцавыя аптычныя рэзанатары, што складаюцца з 3 і болей плоскіх або сферычных люстэркаў. У аптычным рэзанатары са сферычнымі люстэркамі ўзбуджаюцца таксама незалежныя бягучыя насустрач адна адной хвалі.
Літ.:
Ананьев Ю.А. Оптические резонаторы и проблема расходимости лазерного излучения. М., 1979.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗАПАМІНА́ЛЬНАЕ ПРЫСТАСАВА́ННЕ,
сукупнасць тэхн. сродкаў для запісу, захоўвання і ўзнаўлення інфармацыі. Выкарыстоўваюцца ў выліч. тэхніцы, сувязі, аўтаматыцы, станках з лікава-праграмным кіраваннем, вымяральных прыладах і інш.Асн. параметры: ёмістасць (найб. колькасць інфармацыі, якую можна адначасова захоўваць), хуткадзеянне (характарызуе скорасць уводу-вываду інфармацыі і інш.) і энергаспажыванне.
Паводле функцыянальнага прызначэння адрозніваюць З.п. звышаператыўныя (ЗАЗП), аператыўныя (АЗП), пастаянныя (ПЗП, у т.л. перапраграмавальныя) і знешнія (ЗЗП); паводле характару звароту — адрасныя, бязадрасныя, асацыятыўныя (пошук і выбарка інфармацыі па пэўных прыкметах); паводле спосабу выбаркі інфармацыі — з паслядоўным (цыклічным) зваротам, з паралельным зваротам (адвольнай выбаркай). Запіс інфармацыі ў З.п. ажыццяўляецца пераўтварэннем яе ў эл., аптычныя, акустычныя ці інш. сігналы для змены стану, формы або цэласнасці пэўнага фіз. асяроддзя (гл.Накапляльнік, Носьбіт інфармацыі). ЗАЗП і АЗП прызначаны для захоўвання інфармацыі, неабходнай для аперацый, якія выконвае працэсар ЭВМ; у ПЗП захоўваюцца пастаянныя каэфіцыенты, даведачныя табліцы, падпраграмы, мікрапраграмы, знакагенератары і інш. ЗЗП і архіўная памяць прызначаны для захоўвання вял. масіваў інфармацыі для наступнай перадачы іх у АЗП; маюць накапляльнікі на магнітных дысках, барабанах, стужках, а таксама на магн.-аптычных і аптычных дысках. Гл. таксама Памяць ЭВМ.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДВАЙНІКАВА́ННЕ,
утварэнне ў монакрышталі абласцей з заканамерна змененай арыентацыяй крышт. структуры. Структуры двайніковых утварэнняў з’яўляюцца люстраным адбіткам атамнай структуры зыходнага крышталя (матрыцы) у пэўнай плоскасці (плоскасці Д.) ці ўтвараюцца паваротам структуры матрыцы вакол крышталеграфічнай восі (восі Д.) на пастаянны для дадзенага рэчыва вугал або іншым пераўтварэннем сіметрыі крышталёў. Матрыца з двайніковым утварэннем наз. двайніком.
У залежнасці ад колькасці зрошчаных двайніковых утварэнняў структуры наз. трайнікамі, чацвернікамі ці наогул полісінт. двайнікамі. Д. можа адбывацца пры крышталізацыі, мех. дэфармацыі, зрастанні суседніх зародкаў (двайнікі росту), хуткім цеплавым расшырэнні ці сцісканні, награванні дэфармаваных крышталёў (двайнікі рэкрышталізацыі), пры пераходзе ад адной крышт мадыфікацыі да другой. Напр., у крышталях сегнетавай солі двайнікі ўтвараюцца пры пераходзе крышталя ад рамбічнай структуры да монакліннай (пры т-ры Кюры). Д. ўплывае на мех. (трываласць, пластычнасць, крохкасць), м., магн., аптычныя ўласцівасці крышталёў, пагаршае якасць паўправадніковых прылад. Заканамернасці Д. выкарыстоўваюцца для дыягностыкі мінералаў, устанаўлення паходжання і ацэнкі некат. мінералаў як прамысл. сыравіны.
Літ.:
Современная кристаллография. Т. 2. М., 1979;
Т. 4. М., 1981.
Р.М.Шахлевіч.
Да арт.Двайнікаванне. Двайнікі росту: а — пірыт; б — кальцыт; в — полісінтэтычны двайнік альбіту.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ПАДВО́ЙНЫЯ ЗО́РКІ,
зорная сістэма з 2 зорак, звязаных фізічна (фізічныя П.з.) ці размешчаных амаль на адным прамені назірання (аптычныя П.з.). Фіз. П.з. з прычыны ўзаемнага прыцяжэння рухаюцца па эліптычных арбітах вакол агульнага цэнтра мас.
Паводле ўмоў назірання фіз. П.з. падзяляюць на 4 групы. Візуальна-П.з. можна бачыць паасобна простым вокам ці ў тэлескоп, напр. зоркі Міцар і Алькор. Адлегласць паміж кампанентамі можа быць настолькі вялікая, што прыцяжэнне інш. зорак разбурае падвойную сістэму. Спектральна- П.з. выяўляюцца па зменах спектральных ліній (зрушэнне ці раздваенне) у іх спектрах. Зацьменна-П.з. (разнавіднасць спектральна-падвойных) бачныя як пераменныя: перыядычна трапляючы на адну лінію з праменем назірання, яны зацямняюць адна адну. Астраметрычныя П.з. — адна з кампанент вельмі малая і нябачная ў тэлескоп; выяўляецца па анамаліях у руху гал. кампаненты. Існуюць кратныя зорныя сістэмы (складаюцца з некалькіх зорак), напр.Кастар. Прыблізна 70% усіх зорак уваходзяць у склад падвойных ці кратных сістэм. Іх даследаванне мае важнае значэнне для высвятлення прыроды і эвалюцыі зорак.
Літ.:
Бэттен А. Двойные и кратные звезды: Пер. с англ.М., 1976;
Тесные двойные звездные системы и их эволюция. М., 1976.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗА́ПІС ТЭЛЕВІЗІЙНЫХ СІГНА́ЛАЎ,
запіс відарысаў (напр., тэлепраграм) з мэтай іх захоўвання і наступнага ўзнаўлення. Бывае аналагавы і лічбавы (найб. дасканалы). У адрозненне ад фота- і кіназдымкі пры З.т.с. відарыс напачатку пераўтвараецца ў паслядоўнасць эл. сігналаў (відэасігналаў), якія фіксуюцца на носьбіце запісу. Адрозніваюць магн. (найб. пашыраны), аптычны, магн.-аптычны, эл.-статычны, мех. З.т.с.; пры запісе ў памяць ЭВМ выкарыстоўваюцца накапляльнікі даных.
Магн. З.т.с. падобны на магнітны запіс гуку і ажыццяўляецца на магн. стужцы (або дыску) з дапамогай відэамагнітафона. Адрозніваецца магчымасцю шматразовага выкарыстання носьбіта, дазваляе электронны мантаж фрагментаў відэаінфармацыі і інш. Пры аптычным і магн.-аптычным З.т.с. на носьбіт запісу ўздзейнічае светлавы прамень (звычайна лазерны), у выніку чаго асобныя ўчасткі носьбіта мяняюць свае аптычныя характарыстыкі (напр., каэф. адбіцця, пераламлення ці паглынання святла; гл.Аптычны дыск). Пры эл.-статычным З.т.с. на сігналаграме фіксуецца размеркаванне эл. зарадаў (патэнцыяльны рэльеф) на паверхні носьбіта (дыска). Дыскі выкарыстоўваюцца толькі для ўзнаўлення інфармацыі (як грампласцінкі) з дапамогай ёмістаснага пераўтваральніка. Мех. З.т.с. падобны на мех.гуказапіс; яго носьбіт — метал. ці пластмасавы дыск, на паверхні якога сігналаграма фіксуецца ў выглядзе спіральнай канаўкі, шырыня (ці глыбіня) якой мяняецца ў адпаведнасці з параметрамі відэасігналаў.